forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathargs.py
123 lines (121 loc) · 4.13 KB
/
args.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import argparse
def parse_args():
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
"--model_type",
default="bert",
type=str,
help="Type of pre-trained model.")
parser.add_argument(
"--model_name_or_path",
default="bert-base-uncased",
type=str,
help="Path to pre-trained model or shortcut name of model.")
parser.add_argument(
"--output_dir",
default="outputs",
type=str,
help="The output directory where the model predictions and checkpoints will be written. "
"Default as `outputs`")
parser.add_argument(
"--max_seq_length",
default=128,
type=int,
help="The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded.")
parser.add_argument(
"--batch_size",
default=8,
type=int,
help="Batch size per GPU/CPU for training.")
parser.add_argument(
"--learning_rate",
default=5e-5,
type=float,
help="The initial learning rate for Adam.")
parser.add_argument(
"--weight_decay",
default=0.0,
type=float,
help="Weight decay if we apply some.")
parser.add_argument(
"--adam_epsilon",
default=1e-8,
type=float,
help="Epsilon for Adam optimizer.")
parser.add_argument(
"--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument(
"--num_train_epochs",
default=3,
type=int,
help="Total number of training epochs to perform.")
parser.add_argument(
"--max_steps",
default=-1,
type=int,
help="If > 0: set total number of training steps to perform. Override num_train_epochs."
)
parser.add_argument(
"--warmup_proportion",
default=0.0,
type=float,
help="Proportion of training steps to perform linear learning rate warmup for."
)
parser.add_argument(
"--logging_steps",
type=int,
default=500,
help="Log every X updates steps.")
parser.add_argument(
"--save_steps",
type=int,
default=500,
help="Save checkpoint every X updates steps.")
parser.add_argument(
"--seed", type=int, default=42, help="random seed for initialization")
parser.add_argument(
'--device',
choices=['cpu', 'gpu'],
default="gpu",
help="Select which device to train model, defaults to gpu.")
parser.add_argument(
"--doc_stride",
type=int,
default=128,
help="When splitting up a long document into chunks, how much stride to take between chunks."
)
parser.add_argument(
"--n_best_size",
type=int,
default=20,
help="The total number of n-best predictions to generate in the nbest_predictions.json output file."
)
parser.add_argument(
"--null_score_diff_threshold",
type=float,
default=0.0,
help="If null_score - best_non_null is greater than the threshold predict null."
)
parser.add_argument(
"--max_query_length", type=int, default=64, help="Max query length.")
parser.add_argument(
"--max_answer_length", type=int, default=30, help="Max answer length.")
parser.add_argument(
"--do_lower_case",
action='store_false',
help="Whether to lower case the input text. Should be True for uncased models and False for cased models."
)
parser.add_argument(
"--verbose", action='store_true', help="Whether to output verbose log.")
parser.add_argument(
"--version_2_with_negative",
action='store_true',
help="If true, the SQuAD examples contain some that do not have an answer. If using squad v2.0, it should be set true."
)
parser.add_argument(
"--do_train", action='store_true', help="Whether to train the model.")
parser.add_argument(
"--do_predict", action='store_true', help="Whether to predict.")
args = parser.parse_args()
return args