@@ -1025,7 +1025,8 @@ def sgd(name,
10251025 alpha = None , # default - 0.0001
10261026 l1_ratio = None , # default - 0.15, must be within [0, 1]
10271027 fit_intercept = True , # default - True
1028- n_iter = 5 , # default - 5
1028+ max_iter = None ,
1029+ tol = None ,
10291030 shuffle = True , # default - True
10301031 random_state = None , # default - None
10311032 epsilon = None ,
@@ -1057,7 +1058,9 @@ def _name(msg):
10571058 l1_ratio = (_sgd_l1_ratio (_name ('l1ratio' ))
10581059 if l1_ratio is None else l1_ratio ),
10591060 fit_intercept = fit_intercept ,
1060- n_iter = n_iter ,
1061+ tol = _svm_tol (_name ('tol' )) if tol is None else tol ,
1062+ max_iter = (_svm_max_iter (_name ('maxiter' ))
1063+ if max_iter is None else max_iter ),
10611064 learning_rate = (_sgdc_learning_rate (_name ('learning_rate' ))
10621065 if learning_rate is None else learning_rate ),
10631066 eta0 = _sgd_eta0 (_name ('eta0' )) if eta0 is None else eta0 ,
@@ -1077,7 +1080,8 @@ def sgd_regression(name,
10771080 alpha = None , # default - 0.0001
10781081 l1_ratio = None , # default - 0.15, must be within [0, 1]
10791082 fit_intercept = True , # default - True
1080- n_iter = 5 , # default - 5
1083+ tol = None ,
1084+ max_iter = None ,
10811085 shuffle = None , # default - False
10821086 random_state = None , # default - None
10831087 epsilon = None , # default - 0.1
@@ -1102,7 +1106,9 @@ def _name(msg):
11021106 l1_ratio = (_sgd_l1_ratio (_name ('l1ratio' ))
11031107 if l1_ratio is None else l1_ratio ),
11041108 fit_intercept = fit_intercept ,
1105- n_iter = n_iter ,
1109+ tol = _svm_tol (name_func ('tol' )) if tol is None else tol ,
1110+ max_iter = (_svm_max_iter (name_func ('maxiter' ))
1111+ if max_iter is None else max_iter ),
11061112 # For regression, use the SVM epsilon instead of the SGD one.
11071113 epsilon = _svm_epsilon (_name ('epsilon' )) if epsilon is None else epsilon ,
11081114 learning_rate = (_sgdr_learning_rate (_name ('learning_rate' ))
@@ -1305,7 +1311,8 @@ def passive_aggressive(name,
13051311 loss = None ,
13061312 C = None ,
13071313 fit_intercept = False ,
1308- n_iter = None ,
1314+ tol = None ,
1315+ max_iter = None ,
13091316 n_jobs = 1 ,
13101317 shuffle = True ,
13111318 random_state = None ,
@@ -1324,13 +1331,9 @@ def _name(msg):
13241331 np .log (10 ),
13251332 ) if C is None else C ,
13261333 fit_intercept = fit_intercept ,
1327- n_iter = scope .int (
1328- hp .qloguniform (
1329- _name ('n_iter' ),
1330- np .log (1 ),
1331- np .log (1000 ),
1332- q = 1 ,
1333- )) if n_iter is None else n_iter ,
1334+ tol = _svm_tol (_name ('tol' )) if tol is None else tol ,
1335+ max_iter = (_svm_max_iter (_name ('maxiter' ))
1336+ if max_iter is None else max_iter ),
13341337 n_jobs = n_jobs ,
13351338 random_state = _random_state (_name ('rstate' ), random_state ),
13361339 verbose = verbose
0 commit comments