forked from shuboc/LeetCode-2
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
52 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,52 @@ | ||
# Time: O(n^3) | ||
# Space: O(n^2) | ||
|
||
# Given n balloons, indexed from 0 to n-1. | ||
# Each balloon is painted with a number on it | ||
# represented by array nums. | ||
# You are asked to burst all the balloons. | ||
# If the you burst balloon i you will get | ||
# nums[left] * nums[i] * nums[right] coins. | ||
# Here left and right are adjacent indices of i. | ||
# After the burst, the left and right then | ||
# becomes adjacent. | ||
# | ||
# Find the maximum coins you can collect by | ||
# bursting the balloons wisely. | ||
# | ||
# Note: | ||
# (1) You may imagine nums[-1] = nums[n] = 1. | ||
# They are not real therefore you can not burst them. | ||
# (2) 0 <= n <= 500, 0 <= nums[i] <= 100 | ||
# | ||
# Example: | ||
# | ||
# Given [3, 1, 5, 8] | ||
# | ||
# Return 167 | ||
# | ||
# nums = [3,1,5,8] --> [3,5,8] --> [3,8] --> [8] --> [] | ||
# coins = 3*1*5 + 3*5*8 + 1*3*8 + 1*8*1 = 167 | ||
# | ||
|
||
# TLE, although it could pass in C++. | ||
class Solution(object): | ||
def maxCoins(self, nums): | ||
""" | ||
:type nums: List[int] | ||
:rtype: int | ||
""" | ||
coins = [1] + [i for i in nums if i > 0] + [1] | ||
n = len(coins) | ||
max_coins = [[0 for _ in xrange(n)] for _ in xrange(n)] | ||
|
||
for k in xrange(2, n): | ||
for left in xrange(n - k): | ||
right = left + k | ||
for i in xrange(left + 1, right): | ||
max_coins[left][right] = max(max_coins[left][right], \ | ||
coins[left] * coins[i] * coins[right] + \ | ||
max_coins[left][i] + max_coins[i][right]) | ||
|
||
return max_coins[0][-1] | ||
|