forked from dbiir/UER-py
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_classifier.py
470 lines (410 loc) · 19.6 KB
/
run_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
# -*- encoding:utf-8 -*-
"""
This script provides an exmaple to wrap UER-py for classification.
"""
import torch
import json
import random
import argparse
import collections
import torch.nn as nn
from uer.utils.vocab import Vocab
from uer.utils.constants import *
from uer.utils.tokenizer import *
from uer.model_builder import build_model
from uer.utils.optimizers import BertAdam
from uer.utils.config import load_hyperparam
from uer.utils.seed import set_seed
from uer.model_saver import save_model
class BertClassifier(nn.Module):
def __init__(self, args, model):
super(BertClassifier, self).__init__()
self.embedding = model.embedding
self.encoder = model.encoder
self.labels_num = args.labels_num
self.pooling = args.pooling
self.output_layer_1 = nn.Linear(args.hidden_size, args.hidden_size)
self.output_layer_2 = nn.Linear(args.hidden_size, args.labels_num)
self.softmax = nn.LogSoftmax(dim=-1)
self.criterion = nn.NLLLoss()
def forward(self, src, label, mask):
"""
Args:
src: [batch_size x seq_length]
label: [batch_size]
mask: [batch_size x seq_length]
"""
# Embedding.
emb = self.embedding(src, mask)
# Encoder.
output = self.encoder(emb, mask)
# Target.
if self.pooling == "mean":
output = torch.mean(output, dim=1)
elif self.pooling == "max":
output = torch.max(output, dim=1)[0]
elif self.pooling == "last":
output = output[:, -1, :]
else:
output = output[:, 0, :]
output = torch.tanh(self.output_layer_1(output))
logits = self.output_layer_2(output)
loss = self.criterion(self.softmax(logits.view(-1, self.labels_num)), label.view(-1))
return loss, logits
def main():
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
# Path options.
parser.add_argument("--pretrained_model_path", default=None, type=str,
help="Path of the pretrained model.")
parser.add_argument("--output_model_path", default="./models/classifier_model.bin", type=str,
help="Path of the output model.")
parser.add_argument("--vocab_path", default="./models/google_vocab.txt", type=str,
help="Path of the vocabulary file.")
parser.add_argument("--train_path", type=str, required=True,
help="Path of the trainset.")
parser.add_argument("--dev_path", type=str, required=True,
help="Path of the devset.")
parser.add_argument("--test_path", type=str, required=True,
help="Path of the testset.")
parser.add_argument("--config_path", default="./models/google_config.json", type=str,
help="Path of the config file.")
# Model options.
parser.add_argument("--batch_size", type=int, default=64,
help="Batch size.")
parser.add_argument("--seq_length", type=int, default=128,
help="Sequence length.")
parser.add_argument("--encoder", choices=["bert", "lstm", "gru", \
"cnn", "gatedcnn", "attn", \
"rcnn", "crnn", "gpt", "bilstm"], \
default="bert", help="Encoder type.")
parser.add_argument("--bidirectional", action="store_true", help="Specific to recurrent model.")
parser.add_argument("--pooling", choices=["mean", "max", "first", "last"], default="first",
help="Pooling type.")
# Subword options.
parser.add_argument("--subword_type", choices=["none", "char"], default="none",
help="Subword feature type.")
parser.add_argument("--sub_vocab_path", type=str, default="models/sub_vocab.txt",
help="Path of the subword vocabulary file.")
parser.add_argument("--subencoder", choices=["avg", "lstm", "gru", "cnn"], default="avg",
help="Subencoder type.")
parser.add_argument("--sub_layers_num", type=int, default=2, help="The number of subencoder layers.")
# Tokenizer options.
parser.add_argument("--tokenizer", choices=["bert", "char", "space"], default="bert",
help="Specify the tokenizer."
"Original Google BERT uses bert tokenizer on Chinese corpus."
"Char tokenizer segments sentences into characters."
"Word tokenizer supports online word segmentation based on jieba segmentor."
"Space tokenizer segments sentences into words according to space."
)
# Optimizer options.
parser.add_argument("--learning_rate", type=float, default=2e-5,
help="Learning rate.")
parser.add_argument("--warmup", type=float, default=0.1,
help="Warm up value.")
# Training options.
parser.add_argument("--dropout", type=float, default=0.5,
help="Dropout.")
parser.add_argument("--epochs_num", type=int, default=3,
help="Number of epochs.")
parser.add_argument("--report_steps", type=int, default=100,
help="Specific steps to print prompt.")
parser.add_argument("--seed", type=int, default=7,
help="Random seed.")
# Evaluation options.
parser.add_argument("--mean_reciprocal_rank", action="store_true", help="Evaluation metrics for DBQA dataset.")
args = parser.parse_args()
# Load the hyperparameters from the config file.
args = load_hyperparam(args)
set_seed(args.seed)
# Count the number of labels.
labels_set = set()
columns = {}
with open(args.train_path, mode="r", encoding="utf-8") as f:
for line_id, line in enumerate(f):
try:
line = line.strip().split("\t")
if line_id == 0:
for i, column_name in enumerate(line):
columns[column_name] = i
continue
label = int(line[columns["label"]])
labels_set.add(label)
except:
pass
args.labels_num = len(labels_set)
# Load vocabulary.
vocab = Vocab()
vocab.load(args.vocab_path)
args.vocab = vocab
# Build bert model.
# A pseudo target is added.
args.target = "bert"
model = build_model(args)
# Load or initialize parameters.
if args.pretrained_model_path is not None:
# Initialize with pretrained model.
model.load_state_dict(torch.load(args.pretrained_model_path), strict=False)
else:
# Initialize with normal distribution.
for n, p in list(model.named_parameters()):
if 'gamma' not in n and 'beta' not in n:
p.data.normal_(0, 0.02)
# Build classification model.
model = BertClassifier(args, model)
# For simplicity, we use DataParallel wrapper to use multiple GPUs.
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if torch.cuda.device_count() > 1:
print("{} GPUs are available. Let's use them.".format(torch.cuda.device_count()))
model = nn.DataParallel(model)
model = model.to(device)
# Datset loader.
def batch_loader(batch_size, input_ids, label_ids, mask_ids):
instances_num = input_ids.size()[0]
for i in range(instances_num // batch_size):
input_ids_batch = input_ids[i*batch_size: (i+1)*batch_size, :]
label_ids_batch = label_ids[i*batch_size: (i+1)*batch_size]
mask_ids_batch = mask_ids[i*batch_size: (i+1)*batch_size, :]
yield input_ids_batch, label_ids_batch, mask_ids_batch
if instances_num > instances_num // batch_size * batch_size:
input_ids_batch = input_ids[instances_num//batch_size*batch_size:, :]
label_ids_batch = label_ids[instances_num//batch_size*batch_size:]
mask_ids_batch = mask_ids[instances_num//batch_size*batch_size:, :]
yield input_ids_batch, label_ids_batch, mask_ids_batch
# Build tokenizer.
tokenizer = globals()[args.tokenizer.capitalize() + "Tokenizer"](args)
# Read dataset.
def read_dataset(path):
dataset = []
with open(path, mode="r", encoding="utf-8") as f:
for line_id, line in enumerate(f):
if line_id == 0:
continue
try:
line = line.strip().split('\t')
if len(line) == 2:
label = int(line[columns["label"]])
text = line[columns["text_a"]]
tokens = [vocab.get(t) for t in tokenizer.tokenize(text)]
tokens = [CLS_ID] + tokens
mask = [1] * len(tokens)
if len(tokens) > args.seq_length:
tokens = tokens[:args.seq_length]
mask = mask[:args.seq_length]
while len(tokens) < args.seq_length:
tokens.append(0)
mask.append(0)
dataset.append((tokens, label, mask))
elif len(line) == 3: # For sentence pair input.
label = int(line[columns["label"]])
text_a, text_b = line[columns["text_a"]], line[columns["text_b"]]
tokens_a = [vocab.get(t) for t in tokenizer.tokenize(text_a)]
tokens_a = [CLS_ID] + tokens_a + [SEP_ID]
tokens_b = [vocab.get(t) for t in tokenizer.tokenize(text_b)]
tokens_b = tokens_b + [SEP_ID]
tokens = tokens_a + tokens_b
mask = [1] * len(tokens_a) + [2] * len(tokens_b)
if len(tokens) > args.seq_length:
tokens = tokens[:args.seq_length]
mask = mask[:args.seq_length]
while len(tokens) < args.seq_length:
tokens.append(0)
mask.append(0)
dataset.append((tokens, label, mask))
elif len(line) == 4: # For dbqa input.
qid=int(line[columns["qid"]])
label = int(line[columns["label"]])
text_a, text_b = line[columns["text_a"]], line[columns["text_b"]]
tokens_a = [vocab.get(t) for t in tokenizer.tokenize(text_a)]
tokens_a = [CLS_ID] + tokens_a + [SEP_ID]
tokens_b = [vocab.get(t) for t in tokenizer.tokenize(text_b)]
tokens_b = tokens_b + [SEP_ID]
tokens = tokens_a + tokens_b
mask = [1] * len(tokens_a) + [2] * len(tokens_b)
if len(tokens) > args.seq_length:
tokens = tokens[:args.seq_length]
mask = mask[:args.seq_length]
while len(tokens) < args.seq_length:
tokens.append(0)
mask.append(0)
dataset.append((tokens, label, mask, qid))
else:
pass
except:
pass
return dataset
# Evaluation function.
def evaluate(args, is_test):
if is_test:
dataset = read_dataset(args.test_path)
else:
dataset = read_dataset(args.dev_path)
input_ids = torch.LongTensor([sample[0] for sample in dataset])
label_ids = torch.LongTensor([sample[1] for sample in dataset])
mask_ids = torch.LongTensor([sample[2] for sample in dataset])
batch_size = args.batch_size
instances_num = input_ids.size()[0]
if is_test:
print("The number of evaluation instances: ", instances_num)
correct = 0
# Confusion matrix.
confusion = torch.zeros(args.labels_num, args.labels_num, dtype=torch.long)
model.eval()
if not args.mean_reciprocal_rank:
for i, (input_ids_batch, label_ids_batch, mask_ids_batch) in enumerate(batch_loader(batch_size, input_ids, label_ids, mask_ids)):
input_ids_batch = input_ids_batch.to(device)
label_ids_batch = label_ids_batch.to(device)
mask_ids_batch = mask_ids_batch.to(device)
with torch.no_grad():
loss, logits = model(input_ids_batch, label_ids_batch, mask_ids_batch)
logits = nn.Softmax(dim=1)(logits)
pred = torch.argmax(logits, dim=1)
gold = label_ids_batch
for j in range(pred.size()[0]):
confusion[pred[j], gold[j]] += 1
correct += torch.sum(pred == gold).item()
if is_test:
print("Confusion matrix:")
print(confusion)
print("Report precision, recall, and f1:")
for i in range(confusion.size()[0]):
p = confusion[i,i].item()/confusion[i,:].sum().item()
r = confusion[i,i].item()/confusion[:,i].sum().item()
f1 = 2*p*r / (p+r)
if is_test:
print("Label {}: {:.3f}, {:.3f}, {:.3f}".format(i,p,r,f1))
print("Acc. (Correct/Total): {:.4f} ({}/{}) ".format(correct/len(dataset), correct, len(dataset)))
return correct/len(dataset)
else:
for i, (input_ids_batch, label_ids_batch, mask_ids_batch) in enumerate(batch_loader(batch_size, input_ids, label_ids, mask_ids)):
input_ids_batch = input_ids_batch.to(device)
label_ids_batch = label_ids_batch.to(device)
mask_ids_batch = mask_ids_batch.to(device)
with torch.no_grad():
loss, logits = model(input_ids_batch, label_ids_batch, mask_ids_batch)
logits = nn.Softmax(dim=1)(logits)
if i == 0:
logits_all=logits
if i >= 1:
logits_all=torch.cat((logits_all,logits),0)
order = -1
gold = []
for i in range(len(dataset)):
qid = dataset[i][3]
label = dataset[i][1]
if qid == order:
j += 1
if label == 1:
gold.append((qid,j))
else:
order = qid
j = 0
if label == 1:
gold.append((qid,j))
label_order = []
order = -1
for i in range(len(gold)):
if gold[i][0] == order:
templist.append(gold[i][1])
elif gold[i][0] != order:
order=gold[i][0]
if i > 0:
label_order.append(templist)
templist = []
templist.append(gold[i][1])
label_order.append(templist)
order = -1
score_list = []
for i in range(len(logits_all)):
score = float(logits_all[i][1])
qid=int(dataset[i][3])
if qid == order:
templist.append(score)
else:
order = qid
if i > 0:
score_list.append(templist)
templist = []
templist.append(score)
score_list.append(templist)
rank = []
pred = []
for i in range(len(score_list)):
if len(label_order[i])==1:
if label_order[i][0] < len(score_list[i]):
true_score = score_list[i][label_order[i][0]]
score_list[i].sort(reverse=True)
for j in range(len(score_list[i])):
if score_list[i][j] == true_score:
rank.append(1 / (j + 1))
else:
rank.append(0)
else:
true_rank = len(score_list[i])
for k in range(len(label_order[i])):
if label_order[i][k] < len(score_list[i]):
true_score = score_list[i][label_order[i][k]]
temp = sorted(score_list[i],reverse=True)
for j in range(len(temp)):
if temp[j] == true_score:
if j < true_rank:
true_rank = j
if true_rank < len(score_list[i]):
rank.append(1 / (true_rank + 1))
else:
rank.append(0)
MRR = sum(rank) / len(rank)
print(MRR)
return MRR
# Training phase.
print("Start training.")
trainset = read_dataset(args.train_path)
random.shuffle(trainset)
instances_num = len(trainset)
batch_size = args.batch_size
input_ids = torch.LongTensor([example[0] for example in trainset])
label_ids = torch.LongTensor([example[1] for example in trainset])
mask_ids = torch.LongTensor([example[2] for example in trainset])
train_steps = int(instances_num * args.epochs_num / batch_size) + 1
print("Batch size: ", batch_size)
print("The number of training instances:", instances_num)
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'gamma', 'beta']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay_rate': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay_rate': 0.0}
]
optimizer = BertAdam(optimizer_grouped_parameters, lr=args.learning_rate, warmup=args.warmup, t_total=train_steps)
total_loss = 0.
result = 0.0
best_result = 0.0
for epoch in range(1, args.epochs_num+1):
model.train()
for i, (input_ids_batch, label_ids_batch, mask_ids_batch) in enumerate(batch_loader(batch_size, input_ids, label_ids, mask_ids)):
model.zero_grad()
input_ids_batch = input_ids_batch.to(device)
label_ids_batch = label_ids_batch.to(device)
mask_ids_batch = mask_ids_batch.to(device)
loss, _ = model(input_ids_batch, label_ids_batch, mask_ids_batch)
if torch.cuda.device_count() > 1:
loss = torch.mean(loss)
total_loss += loss.item()
if (i + 1) % args.report_steps == 0:
print("Epoch id: {}, Training steps: {}, Avg loss: {:.3f}".format(epoch, i+1, total_loss / args.report_steps))
total_loss = 0.
loss.backward()
optimizer.step()
result = evaluate(args, False)
if result > best_result:
best_result = result
save_model(model, args.output_model_path)
else:
continue
# Evaluation phase.
print("Start evaluation.")
if torch.cuda.device_count() > 1:
model.module.load_state_dict(torch.load(args.output_model_path))
else:
model.load_state_dict(torch.load(args.output_model_path))
evaluate(args, True)
if __name__ == "__main__":
main()