forked from JerryKingQAQ/AEEG-PI-CL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
104 lines (79 loc) · 3.38 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import argparse
import copy
import json
import logging
import os.path
import random
import pandas as pd
from trainer import train
def main(train_args):
result = train(train_args)
return result
def load_json(settings_path):
with open(settings_path) as data_file:
param = json.load(data_file)
return param
def setup_parser():
parser = argparse.ArgumentParser(description='Reproduce of multiple continual learning algorthms.')
parser.add_argument('--config', type=str, default=f'exps/models/exper_1_1.json',
help='Json file of settings.')
# exps/jointed/exper_7_1.json
# exps/exper_1_1.json
# exps/exper_2_6.json
# exps/exper_visualization.json
# exps/exper_time_cpu.json
# exps/cross_dataset/exper_7_1.json
return parser
def make_excel_map(args):
my_dict = {}
if args["cls_model"] == ["joint"]:
start = 1
end = 1
step = 1
else:
start = args['init_cls']
end = args['num_classes']
step = args['increment']
for i in range(start, end + 1, step):
my_dict[str(i)] = []
return my_dict
if __name__ == '__main__':
args = setup_parser().parse_args()
param = load_json(args.config)
args = vars(args) # Converting argparse Namespace to a dict.
args.update(param) # Add parameters from json
model_list = copy.deepcopy(args['cls_model'])
backbone_list = copy.deepcopy(args['backbone_type'])
emotion_list = copy.deepcopy(args['emotion'])
repeat = args['repeat']
excel_map = make_excel_map(args)
for model in model_list:
for backbone in backbone_list:
for emotion in emotion_list:
top1_df = pd.DataFrame(excel_map)
top5_df = pd.DataFrame(excel_map)
for i in range(repeat):
train_args = args
train_args['round'] = i
train_args['cls_model'] = model
train_args['backbone_type'] = backbone
train_args['emotion'] = emotion
if train_args['random_seed']: # if seed equal -1, get into a random state
train_args['seed'] = random.randint(0, 2 ** 32 - 1)
result = main(train_args)
result[f'experiment {i}'] = i
# add top1 result
top1_df.loc[len(top1_df)] = result["cnn_curve"]['top1']
# add top5 result
top5_df.loc[len(top5_df)] = result["cnn_curve"]['top5']
top1_save_path = f"excel/{train_args['dataset']}/{train_args['frequency']}_{emotion}_{model}_{backbone}" \
f"_{train_args['init_cls']}_{train_args['increment']}_top1.xlsx"
top5_save_path = f"excel/{train_args['dataset']}/{train_args['frequency']}_{emotion}_{model}_{backbone}" \
f"_{train_args['init_cls']}_{train_args['increment']}_top5.xlsx"
if not os.path.exists(os.path.dirname(top1_save_path)):
os.makedirs(os.path.dirname(top1_save_path))
if not os.path.exists(os.path.dirname(top5_save_path)):
os.makedirs(os.path.dirname(top5_save_path))
# save result
top1_df.to_excel(top1_save_path, index=True)
top5_df.to_excel(top5_save_path, index=True)