@@ -305,9 +305,9 @@ def __init__(self, name: Optional[str],
305
305
- "grid_search": Optimizer that iteratively tests all possible hyperparameter combinations.
306
306
- "random_grid_search": A variation of the grid search optimization that randomly picks
307
307
hyperparameter combinations from all possible hyperparameter combinations.
308
- - "sk_opt": Scikit-Optimize based on theories of Baysian optimization.
308
+ - "sk_opt": Scikit-Optimize based on theories of bayesian optimization.
309
309
- "random_search": randomly chooses hyperparameter from grid-free domain.
310
- - "smac": SMAC based on theories of Baysian optimization.
310
+ - "smac": SMAC based on theories of bayesian optimization.
311
311
- "nevergrad": Nevergrad based on theories of evolutionary learning.
312
312
313
313
- In case an object is given:
@@ -359,7 +359,7 @@ def __init__(self, name: Optional[str],
359
359
360
360
test_size:
361
361
The amount of the data that should be left out if no outer_cv is given and
362
- eval_final_perfomance is set to True.
362
+ eval_final_performance is set to True.
363
363
364
364
calculate_metrics_per_fold:
365
365
If True, the metrics are calculated for each inner_fold.
@@ -377,11 +377,11 @@ def __init__(self, name: Optional[str],
377
377
gives only warn and error, 1 gives adds info and 2 adds debug.
378
378
379
379
learning_curves:
380
- Enables larning curve procedure. Evaluate learning process over
380
+ Enables learning curve procedure. Evaluate learning process over
381
381
different sizes of input. Depends on learning_curves_cut.
382
382
383
383
learning_curves_cut:
384
- The tested relativ cuts for data size.
384
+ The tested relative cuts for data size.
385
385
386
386
performance_constraints:
387
387
Objects that indicate whether a configuration should
@@ -439,7 +439,7 @@ def __init__(self, name: Optional[str],
439
439
learning_curves_cut = learning_curves_cut )
440
440
441
441
# ====================== Data ===========================
442
- self .data = Hyperpipe .Data ()
442
+ self .data = Hyperpipe .Data (allow_multidim_targets = allow_multidim_targets )
443
443
444
444
# ====================== Output Folder and Log File Management ===========================
445
445
if output_settings :
@@ -1215,7 +1215,7 @@ def train_and_get_fimps(pipeline, train_idx, test_idx, data_X, data_y, data_kwar
1215
1215
no_outer_cv_indices = False
1216
1216
if outer_fold .best_config .best_config_score is None :
1217
1217
no_outer_cv_indices = True
1218
- if outer_fold .best_config .best_config_score .training is None or not outer_fold .best_config .best_config_score .training .indices :
1218
+ elif outer_fold .best_config .best_config_score .training is None or not outer_fold .best_config .best_config_score .training .indices :
1219
1219
no_outer_cv_indices = True
1220
1220
1221
1221
if no_outer_cv_indices :
0 commit comments