|
| 1 | +use crate::{ |
| 2 | + assembler::{MaybeUnresolvedInstr, Op, PseudoOp, Token}, |
| 3 | + defs::{LC3Word, RegAddr}, |
| 4 | + instruction::{ADD_OPCODE, AND_OPCODE, ALL_JUMP_OPCODES, BRANCH_OPCODE, JSR_OPCODE, ALL_LOAD_OPCODES, ALL_STORE_OPCODES, TRAP_OPCODE, NOT_OPCODE}, |
| 5 | +}; |
| 6 | +use anyhow::{bail, Result}; |
| 7 | + |
| 8 | +// All of these functions are inlined because they work on the same exact data but are split up for |
| 9 | +// legibility |
| 10 | + |
| 11 | +/// First stage of the lexer operation, where any prefix labels are stripped out |
| 12 | +#[inline] |
| 13 | +pub fn prefix_label_pass(token_chain: &[Token]) -> (Option<&str>, &[Token]) { |
| 14 | + if token_chain[0].is_string() { |
| 15 | + let label_str: &str = match &token_chain[0] { |
| 16 | + Token::STRING(label) => label.as_str(), |
| 17 | + _ => panic!("This shouldn't happen"), |
| 18 | + }; |
| 19 | + (Some(label_str), &token_chain[1..]) |
| 20 | + } else { |
| 21 | + (None, token_chain) |
| 22 | + } |
| 23 | +} |
| 24 | + |
| 25 | +/// Second stage of the lexer operation, where a chain of unresolved instructions is created from |
| 26 | +/// the asm op. If the line consists only of a comment, then an empty Vec is returned |
| 27 | +#[inline] |
| 28 | +pub fn construct_instruction_pass(token_chain: &[Token]) -> Result<Vec<MaybeUnresolvedInstr>> { |
| 29 | + let mut result: Vec<MaybeUnresolvedInstr> = Vec::new(); |
| 30 | + |
| 31 | + let operation = &token_chain[0]; |
| 32 | + |
| 33 | + if let Token::INSTR(op) = operation { |
| 34 | + fn check_reg<const SHIFT: usize>( |
| 35 | + token: &Token, |
| 36 | + instr: &mut MaybeUnresolvedInstr, |
| 37 | + ) -> Result<(), anyhow::Error> { |
| 38 | + if let Token::REGISTER(reg) = token { |
| 39 | + instr.value |= (LC3Word::from(*reg) << SHIFT); |
| 40 | + Ok(()) |
| 41 | + } else { |
| 42 | + bail!("NOT REG") |
| 43 | + } |
| 44 | + } |
| 45 | + |
| 46 | + fn check_offset<const SHIFT: u8, const MAX_LEN: u8>( |
| 47 | + token: &Token, |
| 48 | + instr: &mut MaybeUnresolvedInstr, |
| 49 | + ) -> Result<(), anyhow::Error> { |
| 50 | + if let Token::NUM(num) = token { |
| 51 | + let max_mask = const { 1 << (MAX_LEN + 1) }; |
| 52 | + if *num < max_mask { |
| 53 | + instr.value |= num << SHIFT; |
| 54 | + Ok(()) |
| 55 | + } else { |
| 56 | + bail!("TOO BIG") |
| 57 | + } |
| 58 | + } else if let Token::STRING(label) = token { |
| 59 | + instr |
| 60 | + .bindings |
| 61 | + .push((label.clone(), const { SHIFT + MAX_LEN }, SHIFT)); |
| 62 | + Ok(()) |
| 63 | + } else { |
| 64 | + bail!("NOT OFFSET") |
| 65 | + } |
| 66 | + } |
| 67 | + |
| 68 | + fn check_reg_or_offset<const SHIFT: u8, const MAX_OFFSET_LEN: u8>( |
| 69 | + token: &Token, |
| 70 | + instr: &mut MaybeUnresolvedInstr, |
| 71 | + ) -> Result<(), anyhow::Error> { |
| 72 | + if let Token::REGISTER(reg) = token { |
| 73 | + instr.value |= (LC3Word::from(*reg) << SHIFT); |
| 74 | + Ok(()) |
| 75 | + } else if let Token::NUM(num) = token { |
| 76 | + let max_mask = const { 1 << (MAX_OFFSET_LEN + 1) }; |
| 77 | + if *num < max_mask { |
| 78 | + instr.value |= num << SHIFT; |
| 79 | + instr.value |= 1 << MAX_OFFSET_LEN; |
| 80 | + Ok(()) |
| 81 | + } else { |
| 82 | + bail!("TOO BIG") |
| 83 | + } |
| 84 | + } else if let Token::STRING(label) = token { |
| 85 | + instr |
| 86 | + .bindings |
| 87 | + .push((label.clone(), const { SHIFT + MAX_OFFSET_LEN }, SHIFT)); |
| 88 | + Ok(()) |
| 89 | + } else { |
| 90 | + bail!("NOT REG OR OFFSET") |
| 91 | + } |
| 92 | + } |
| 93 | + |
| 94 | + let (opcode, sequence) = match op { |
| 95 | + Op::ADD => ( |
| 96 | + ADD_OPCODE, |
| 97 | + [check_reg::<9>, check_reg::<6>, check_reg_or_offset::<0, 5>].as_slice(), |
| 98 | + ), |
| 99 | + Op::AND => ( |
| 100 | + AND_OPCODE, |
| 101 | + [check_reg::<9>, check_reg::<6>, check_reg_or_offset::<0, 5>].as_slice()), |
| 102 | + Op::LD => ( |
| 103 | + ALL_LOAD_OPCODES[0], |
| 104 | + [check_reg::<9>, check_offset::<0, 9>].as_slice() |
| 105 | + ), |
| 106 | + Op::LDI => ( |
| 107 | + ALL_LOAD_OPCODES[1], |
| 108 | + [check_reg::<9>, check_offset::<0, 9>].as_slice() |
| 109 | + ), |
| 110 | + Op::LDR => ( |
| 111 | + ALL_LOAD_OPCODES[2], |
| 112 | + [check_reg::<9>, check_reg::<6>, check_offset::<0, 6>].as_slice() |
| 113 | + ), |
| 114 | + Op::LEA => ( |
| 115 | + ALL_LOAD_OPCODES[3], |
| 116 | + [check_reg::<9>, check_offset::<0, 9>].as_slice() |
| 117 | + ), |
| 118 | + Op::ST => ( |
| 119 | + ALL_STORE_OPCODES[0], |
| 120 | + [check_reg::<9>, check_offset::<0, 9>].as_slice() |
| 121 | + ), |
| 122 | + Op::STI => ( |
| 123 | + ALL_STORE_OPCODES[1], |
| 124 | + [check_reg::<9>, check_offset::<0, 9>].as_slice() |
| 125 | + ), |
| 126 | + Op::STR => ( |
| 127 | + ALL_STORE_OPCODES[2], |
| 128 | + [check_reg::<9>, check_reg::<6>, check_offset::<0, 6>].as_slice() |
| 129 | + ), |
| 130 | + Op::NOT => ( |
| 131 | + NOT_OPCODE, |
| 132 | + [check_reg::<9>, check_reg::<6>].as_slice() |
| 133 | + ), |
| 134 | + _ => todo!(), |
| 135 | + }; |
| 136 | + |
| 137 | + let mut instr = MaybeUnresolvedInstr { |
| 138 | + // Shift opcode to start |
| 139 | + value: (opcode as LC3Word) << 12, |
| 140 | + bindings: Vec::new(), |
| 141 | + }; |
| 142 | + |
| 143 | + for (process, token) in sequence.iter().zip(&token_chain[1..]) { |
| 144 | + process(token, &mut instr)?; |
| 145 | + } |
| 146 | + |
| 147 | + result.push(instr); |
| 148 | + } else if operation.is_meta() { |
| 149 | + todo!() |
| 150 | + } else if !operation.is_comment() { |
| 151 | + bail!("Line is invalid, does not start with an instruction!") |
| 152 | + } |
| 153 | + |
| 154 | + Ok(result) |
| 155 | +} |
| 156 | + |
| 157 | +/// Wrapper function to provide a cleaner API for the lexing passes |
| 158 | +pub fn lexer(token_chain: &[Token]) -> (Option<&str>, Result<Vec<MaybeUnresolvedInstr>>) { |
| 159 | + let (label, chain) = prefix_label_pass(token_chain); |
| 160 | + let result = construct_instruction_pass(chain); |
| 161 | + |
| 162 | + // The result gets passed on so the assembler can attatch more context to any error messages |
| 163 | + // generated (i.e. the expected address of the error) |
| 164 | + (label, result) |
| 165 | +} |
| 166 | + |
| 167 | +#[cfg(test)] |
| 168 | +mod test { |
| 169 | + use super::*; |
| 170 | + |
| 171 | + #[test] |
| 172 | + fn lex_label_instr() { |
| 173 | + let test_vec = vec![ |
| 174 | + Token::STRING("LABEL1".to_string()), |
| 175 | + Token::INSTR(Op::ILLEGAL), |
| 176 | + ]; |
| 177 | + let (label, instr) = prefix_label_pass(&test_vec); |
| 178 | + |
| 179 | + assert_eq!(label.unwrap(), "LABEL1"); |
| 180 | + assert_eq!(instr[0], Token::INSTR(Op::ILLEGAL)); |
| 181 | + } |
| 182 | + |
| 183 | + #[test] |
| 184 | + fn lex_and_instr() { |
| 185 | + let test_vec = vec![ |
| 186 | + Token::STRING("LABEL1".to_string()), |
| 187 | + Token::INSTR(Op::AND), |
| 188 | + Token::REGISTER(RegAddr::Zero), |
| 189 | + Token::REGISTER(RegAddr::One), |
| 190 | + Token::REGISTER(RegAddr::Zero) |
| 191 | + ]; |
| 192 | + let (label, instr) = lexer(&test_vec); |
| 193 | + |
| 194 | + assert_eq!(label.unwrap(), "LABEL1"); |
| 195 | + assert_eq!(instr.unwrap().first().unwrap().value, 0b0101000001000000); |
| 196 | + |
| 197 | + let test_vec = vec![ |
| 198 | + Token::INSTR(Op::AND), |
| 199 | + Token::REGISTER(RegAddr::Three), |
| 200 | + Token::REGISTER(RegAddr::One), |
| 201 | + Token::NUM(0b10011) |
| 202 | + ]; |
| 203 | + let (label, instr) = lexer(&test_vec); |
| 204 | + |
| 205 | + assert_eq!(label, None); |
| 206 | + assert_eq!(instr.unwrap().first().unwrap().value, 0b0101011001110011); |
| 207 | + } |
| 208 | + |
| 209 | + #[test] |
| 210 | + fn lex_add_instr() { |
| 211 | + let test_vec = vec![ |
| 212 | + Token::STRING("LABEL1".to_string()), |
| 213 | + Token::INSTR(Op::ADD), |
| 214 | + Token::REGISTER(RegAddr::Zero), |
| 215 | + Token::REGISTER(RegAddr::One), |
| 216 | + Token::REGISTER(RegAddr::Zero) |
| 217 | + ]; |
| 218 | + let (label, instr) = lexer(&test_vec); |
| 219 | + |
| 220 | + assert_eq!(label.unwrap(), "LABEL1"); |
| 221 | + assert_eq!(instr.unwrap().first().unwrap().value, 0b0001000001000000); |
| 222 | + |
| 223 | + let test_vec = vec![ |
| 224 | + Token::INSTR(Op::ADD), |
| 225 | + Token::REGISTER(RegAddr::Three), |
| 226 | + Token::REGISTER(RegAddr::One), |
| 227 | + Token::NUM(0b10011) |
| 228 | + ]; |
| 229 | + let (label, instr) = lexer(&test_vec); |
| 230 | + |
| 231 | + assert_eq!(label, None); |
| 232 | + assert_eq!(instr.unwrap().first().unwrap().value, 0b0001011001110011); |
| 233 | + } |
| 234 | + |
| 235 | + #[test] |
| 236 | + fn lex_load_instrs() { |
| 237 | + let test_vec = vec![ |
| 238 | + Token::INSTR(Op::LD), |
| 239 | + Token::REGISTER(RegAddr::Five), |
| 240 | + Token::NUM(0b000111000) |
| 241 | + ]; |
| 242 | + let (label, instr) = lexer(&test_vec); |
| 243 | + |
| 244 | + assert_eq!(label, None); |
| 245 | + assert_eq!(instr.unwrap().first().unwrap().value, 0b0010101000111000); |
| 246 | + |
| 247 | + let test_vec = vec![ |
| 248 | + Token::INSTR(Op::LDI), |
| 249 | + Token::REGISTER(RegAddr::Five), |
| 250 | + Token::NUM(0b000111000) |
| 251 | + ]; |
| 252 | + let (label, instr) = lexer(&test_vec); |
| 253 | + |
| 254 | + assert_eq!(label, None); |
| 255 | + assert_eq!(instr.unwrap().first().unwrap().value, 0b1010101000111000); |
| 256 | + |
| 257 | + let test_vec = vec![ |
| 258 | + Token::INSTR(Op::LDR), |
| 259 | + Token::REGISTER(RegAddr::Five), |
| 260 | + Token::REGISTER(RegAddr::Two), |
| 261 | + Token::NUM(0b111000) |
| 262 | + ]; |
| 263 | + let (label, instr) = lexer(&test_vec); |
| 264 | + |
| 265 | + assert_eq!(label, None); |
| 266 | + assert_eq!(instr.unwrap().first().unwrap().value, 0b0110101010111000); |
| 267 | + |
| 268 | + let test_vec = vec![ |
| 269 | + Token::INSTR(Op::LEA), |
| 270 | + Token::REGISTER(RegAddr::Five), |
| 271 | + Token::NUM(0b000111000) |
| 272 | + ]; |
| 273 | + let (label, instr) = lexer(&test_vec); |
| 274 | + |
| 275 | + assert_eq!(label, None); |
| 276 | + assert_eq!(instr.unwrap().first().unwrap().value, 0b1110101000111000); |
| 277 | + } |
| 278 | + |
| 279 | + #[test] |
| 280 | + fn lex_store_instrs() { |
| 281 | + let test_vec = vec![ |
| 282 | + Token::INSTR(Op::ST), |
| 283 | + Token::REGISTER(RegAddr::Five), |
| 284 | + Token::NUM(0b000111000) |
| 285 | + ]; |
| 286 | + let (label, instr) = lexer(&test_vec); |
| 287 | + |
| 288 | + assert_eq!(label, None); |
| 289 | + assert_eq!(instr.unwrap().first().unwrap().value, 0b0011101000111000); |
| 290 | + |
| 291 | + let test_vec = vec![ |
| 292 | + Token::INSTR(Op::STI), |
| 293 | + Token::REGISTER(RegAddr::Five), |
| 294 | + Token::NUM(0b000111000) |
| 295 | + ]; |
| 296 | + let (label, instr) = lexer(&test_vec); |
| 297 | + |
| 298 | + assert_eq!(label, None); |
| 299 | + assert_eq!(instr.unwrap().first().unwrap().value, 0b1011101000111000); |
| 300 | + |
| 301 | + let test_vec = vec![ |
| 302 | + Token::INSTR(Op::STR), |
| 303 | + Token::REGISTER(RegAddr::Five), |
| 304 | + Token::REGISTER(RegAddr::Two), |
| 305 | + Token::NUM(0b111000) |
| 306 | + ]; |
| 307 | + let (label, instr) = lexer(&test_vec); |
| 308 | + |
| 309 | + assert_eq!(label, None); |
| 310 | + assert_eq!(instr.unwrap().first().unwrap().value, 0b0111101010111000); |
| 311 | + } |
| 312 | + |
| 313 | + #[test] |
| 314 | + fn lex_not_instr() { |
| 315 | + let test_vec = vec![ |
| 316 | + Token::INSTR(Op::NOT), |
| 317 | + Token::REGISTER(RegAddr::Five), |
| 318 | + Token::REGISTER(RegAddr::Zero), |
| 319 | + ]; |
| 320 | + let (label, instr) = lexer(&test_vec); |
| 321 | + |
| 322 | + assert_eq!(label, None); |
| 323 | + // This is the value that should be produced. Currently this fails, as there is no way to |
| 324 | + // insert arbitrary bits into instructions when forming them. |
| 325 | + assert_eq!(instr.unwrap().first().unwrap().value, 0b1001101000111111); |
| 326 | + } |
| 327 | +} |
0 commit comments