-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlayersTest.py
126 lines (111 loc) · 5.74 KB
/
layersTest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import numpy as np
import unittest
import layers
import layer
import l2_loss_vars
class TestLayers(unittest.TestCase):
def setUp(self):
self.layers = layers.layers("model1")
self.ls = layers.layers("model2")
self.initor = {
'fc': {'weight': self.xavier_initializer(), 'bias': self.constant_initializer(0)},
'bn': {'alpha': self.constant_initializer(1), 'beta': self.constant_initializer(0)},
'conv': {'weight': self.gaussian_initializer(), 'bias': self.constant_initializer(0)}
}
def xavier_initializer(self):
return lambda w: w + np.random.randn(np.shape(w)[0], np.shape(w)[1]) / np.sqrt(np.shape(w)[1])
def constant_initializer(self, constant):
return lambda x: x + constant
def gaussian_initializer(self):
return lambda w: w + 0.001 * np.random.randn(np.shape(w)[0], np.shape(w)[1], np.shape(w)[2], np.shape(w)[3])
def assertNumpyArraysEqual(self, this, that): # 比较np.array
if this.shape != that.shape:
raise AssertionError("Shapes don't match")
if not np.allclose(this, that):
raise AssertionError("Elements don't match!")
def test_add_initmodel(self):
ls = layers.layers("model0")
ls.add(layer.fc(3, 4, True, True)) # add layer
self.assertEqual(ls.num_layers, 1)
ls.add(layer.relu())
ls.add(layer.sigmoid())
ls.add(layer.sigmoid())
self.layers.add(layer.convolution(2, 3, 2, 2, 2, True, True, 1))
self.layers.add(layer.dropout(0.5))
self.layers.add(layer.max_pool(2, 2, 2))
self.layers.add(layer.avg_pool(2, 2, 2))
self.layers.add(ls) # add layers
self.assertEqual(self.layers.num_layers, 8)
self.layers.init_model(self.initor) #init_model
self.assertEqual(np.shape(self.layers.stacked_layers[0].weight), (2, 3, 2, 2))
self.assertNumpyArraysEqual(self.layers.stacked_layers[0].bias, np.zeros((2, )))
self.assertEqual(np.shape(self.layers.stacked_layers[4].weight), (4, 3))
self.assertNumpyArraysEqual(self.layers.stacked_layers[4].bias, np.zeros((4, 1)))
self.assertEqual(np.shape(l2_loss_vars.l2_loss_vars[1]), (4, 3))
self.assertEqual(self.layers.stacked_layers[0].instance_name, "conv0")
self.assertEqual(self.layers.stacked_layers[1].instance_name, "dropout0")
self.assertEqual(self.layers.stacked_layers[2].instance_name, "max_pool0")
self.assertEqual(self.layers.stacked_layers[3].instance_name, "avg_pool0")
self.assertEqual(self.layers.stacked_layers[4].instance_name, "fc0")
self.assertEqual(self.layers.stacked_layers[5].instance_name, "relu0")
self.assertEqual(self.layers.stacked_layers[6].instance_name, "sigmoid0")
self.assertEqual(self.layers.stacked_layers[7].instance_name, "sigmoid1")
def test_infer_save_load(self):
t_shape = (18, 1)
self.layers.add(layer.convolution(2, 3, 2, 2, 2, True, True, 1))
self.layers.add(layer.max_pool(2, 2, 2))
self.layers.add(layer.avg_pool(2, 2, 2))
self.layers.add(layer.dropout(0.5))
self.layers.add(layer.reshape(t_shape))
self.layers.add(layer.fc(18, 4, True, True))
self.layers.add(layer.relu())
self.layers.add(layer.fc(4, 2, False, False))
self.layers.add(layer.sigmoid())
self.layers.init_model(self.initor)
output = self.layers.infer([np.zeros((3, 28, 28)), np.zeros((3, 28, 28))])[0]
#list1 = ["reshape", "fc0", "relu0", "fc1", "sigmoid0"] # pass_name
#self.layers.pass_name(list1)
self.assertEqual(np.shape(output), (2, 1))
self.layers.save("ss.npz")
self.layers.load("ss.npz") #文件后缀名是npz
def test_compute_gradient(self):
target = [np.arange(5).reshape(5, 1), np.ones((5, 1))]
logit = [np.ones((5, 1)), np.zeros((5, 1))]
self.layers.lmbda = 2.0
loss, grad = self.layers.compute_gradient(logit, target)
self.assertEqual(np.shape(grad[0]), (5, 1))
self.assertEqual(len(grad), 2)
def test_train(self): #sgd
t_shape = (18, 1)
self.layers.add(layer.convolution(2, 3, 2, 2, 2, True, True, 1))
self.layers.add(layer.max_pool(2, 2, 2))
self.layers.add(layer.avg_pool(2, 2, 2))
self.layers.add(layer.dropout(0.5))
self.layers.add(layer.reshape(t_shape))
self.layers.add(layer.fc(18, 4, True, True))
self.layers.add(layer.relu())
self.layers.add(layer.fc(4, 2, False, False))
self.layers.add(layer.sigmoid())
self.layers.init_model(self.initor)
data = [np.zeros((3, 28, 28)), np.zeros((3, 28, 28))]
target = [np.array([[0], [1]]), np.array([[1], [0]])]
loss, logit = self.layers.train(data, target, 1, 1, 2)
self.assertEqual(len(logit), 2)
def test_train(self): #adam
t_shape = (18, 1)
self.layers.add(layer.convolution(2, 3, 2, 2, 2, True, True, 1))
self.layers.add(layer.max_pool(2, 2, 2))
self.layers.add(layer.avg_pool(2, 2, 2))
self.layers.add(layer.dropout(0.5))
self.layers.add(layer.reshape(t_shape))
self.layers.add(layer.fc(18, 4, True, True))
self.layers.add(layer.relu())
self.layers.add(layer.fc(4, 2, False, False))
self.layers.add(layer.sigmoid())
self.layers.init_model(self.initor)
data = [np.zeros((3, 28, 28)), np.zeros((3, 28, 28))]
target = [np.array([[0], [1]]), np.array([[1], [0]])]
loss, logit = self.layers.train(data, target, 1, 1, 2)
self.assertEqual(len(logit), 2)
if __name__ == '__main__':
unittest.main()