|
| 1 | +#******************************************# |
| 2 | +''' |
| 3 | +This program can be used to apply smoothing (blurring) techniques on brain MRI scan image |
| 4 | +All image processing functions are performed on grayscale image (need for opencv tool) |
| 5 | +''' |
| 6 | +#******************************************# |
| 7 | + |
| 8 | +import cv2 |
| 9 | +import numpy as np |
| 10 | +import matplotlib.pyplot as plt |
| 11 | + |
| 12 | +kernel = np.ones((5,5),np.float32)/25 #for cv2.filter2D() |
| 13 | + |
| 14 | +class smoothing(object): |
| 15 | + |
| 16 | + def read_image(self,image): |
| 17 | + image_read = cv2.imread(image) |
| 18 | + image_gray = cv2.cvtColor(image_read,cv2.COLOR_BGR2GRAY) |
| 19 | + |
| 20 | + return image_gray |
| 21 | + ''' |
| 22 | + cv2.filter2D() - to convolve the kernel with an image |
| 23 | + ''' |
| 24 | + def filter2D(self,image_gray): |
| 25 | + image_result = cv2.filter2D(image_gray,-1,kernel) |
| 26 | + return image_result |
| 27 | + ''' |
| 28 | + Blurring - Low pass filter kernel |
| 29 | + - removal of noise |
| 30 | + - removes high frequency content (noise, edges) |
| 31 | + - 4 types - averaging, median, gaussian, bilateral |
| 32 | + ''' |
| 33 | + ''' |
| 34 | + cv2.blur() or cv2.boxFilter() - convolving image with normalized box filter |
| 35 | + - takes avg of pixels under kernel area and replaces central element with this average |
| 36 | + ''' |
| 37 | + def averaging(self,image_gray): |
| 38 | + image_result = cv2.blur(image_gray,(5,5)) |
| 39 | + return image_result |
| 40 | + ''' |
| 41 | + cv2.GaussianBlur() - remove gaussian noise from the noise |
| 42 | + Instead of box filter with equal coefficients, we specify the width and height of kernel (positive and odd) |
| 43 | + SigmaX Gaussian kernel standard deviation in X direction and SigmaY in Y-direction |
| 44 | + Gaussian filter takes the a neighborhood around the pixel and finds its Gaussian weighted average |
| 45 | + ''' |
| 46 | + def gaussian(self,image_gray): |
| 47 | + image_result = cv2.GaussianBlur(image_gray,(5,5),sigmaX=0) |
| 48 | + return image_result |
| 49 | + ''' |
| 50 | + cv2.meadianBlur() - computes median of all pixels under the kernel and the central pixel |
| 51 | + is replaced with this median value. |
| 52 | + Effective in removing salt and pepper noise - reduces noise effectively. |
| 53 | + ''' |
| 54 | + def median(self,image_gray): |
| 55 | + image_result = cv2.medianBlur(image_gray,5) |
| 56 | + return image_result |
| 57 | + |
| 58 | + ''' |
| 59 | + cv2.bilateralFilter() - noise removal while preserving edges |
| 60 | + bilateral filter = Gaussian filter + multiplicative gaussian filter component which is a function of pixel intensity differences. |
| 61 | + - sptail neigbors + intensity domain |
| 62 | + ''' |
| 63 | + def bilateral(self,image_gray): |
| 64 | + image_result = cv2.bilateralFilter(image_gray,9,75,75) |
| 65 | + return image_result |
| 66 | + |
| 67 | +_inst = smoothing() |
| 68 | +read_image = _inst.read_image |
| 69 | +filter2D = _inst.filter2D |
| 70 | +averaging = _inst.averaging |
| 71 | +gaussian = _inst.gaussian |
| 72 | +median = _inst.median |
| 73 | +bilateral = _inst.bilateral |
| 74 | + |
| 75 | +image_path = 'image_tumor.jpg' |
| 76 | +tumor = read_image(image_path) |
| 77 | + |
| 78 | +filter2D = filter2D(tumor) |
| 79 | +averaging = averaging(tumor) |
| 80 | +gaussian = gaussian(tumor) |
| 81 | +median = median(tumor) |
| 82 | +bilateral = bilateral(tumor) |
| 83 | + |
| 84 | +##################################### |
| 85 | +## Plotting all stages of image blurring ## |
| 86 | +##################################### |
| 87 | +fig, axs = plt.subplots(2,3, figsize=(15, 9), facecolor='w', edgecolor='k') |
| 88 | +fig.subplots_adjust(hspace = .25, wspace=.5) |
| 89 | + |
| 90 | +axs = axs.ravel() |
| 91 | + |
| 92 | +axs[0].imshow(tumor,'gray') |
| 93 | +axs[0].set_title('1. Orginial Gray Image') |
| 94 | +axs[1].imshow(filter2D,'gray') |
| 95 | +axs[1].set_title('2. Using cv2.filter2D()') |
| 96 | +axs[2].imshow(averaging,'gray') |
| 97 | +axs[2].set_title('3. Using cv2.blur()') |
| 98 | +axs[3].imshow(gaussian,'gray') |
| 99 | +axs[3].set_title('4. Using cv2.GaussianBlur()') |
| 100 | +axs[4].imshow(median,'gray') |
| 101 | +axs[4].set_title('5. Using cv2.medianBlur()') |
| 102 | +axs[5].imshow(bilateral,'gray') |
| 103 | +axs[5].set_title('6. Using cv2.bilateralFilter()') |
| 104 | + |
| 105 | +plt.show() |
| 106 | + |
| 107 | + |
| 108 | + |
0 commit comments