forked from rgcgithub/clamms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathltqnorm.c
115 lines (106 loc) · 2.78 KB
/
ltqnorm.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
/*
* http://home.online.no/~pjacklam/notes/invnorm/impl/sprouse/ltqnorm.c
* Implementation by Chad Sprouse
* Original comments below
*
*-------------------------------------------------------------------
*
* Lower tail quantile for standard normal distribution function.
*
* This function returns an approximation of the inverse cumulative
* standard normal distribution function. I.e., given P, it returns
* an approximation to the X satisfying P = Pr{Z <= X} where Z is a
* random variable from the standard normal distribution.
*
* The algorithm uses a minimax approximation by rational functions
* and the result has a relative error whose absolute value is less
* than 1.15e-9.
*
* Author: Peter John Acklam
* Time-stamp: 2002-06-09 18:45:44 +0200
* E-mail: [email protected]
* WWW URL: http://www.math.uio.no/~jacklam
*
* C implementation adapted from Peter's Perl version
*/
#include <math.h>
#include <errno.h>
/* Coefficients in rational approximations. */
static const double a[] =
{
-3.969683028665376e+01,
2.209460984245205e+02,
-2.759285104469687e+02,
1.383577518672690e+02,
-3.066479806614716e+01,
2.506628277459239e+00
};
static const double b[] =
{
-5.447609879822406e+01,
1.615858368580409e+02,
-1.556989798598866e+02,
6.680131188771972e+01,
-1.328068155288572e+01
};
static const double c[] =
{
-7.784894002430293e-03,
-3.223964580411365e-01,
-2.400758277161838e+00,
-2.549732539343734e+00,
4.374664141464968e+00,
2.938163982698783e+00
};
static const double d[] =
{
7.784695709041462e-03,
3.224671290700398e-01,
2.445134137142996e+00,
3.754408661907416e+00
};
#define LOW 0.02425
#define HIGH 0.97575
double
ltqnorm(double p)
{
double q, r;
errno = 0;
if (p < 0 || p > 1)
{
errno = EDOM;
return 0.0;
}
else if (p == 0)
{
errno = ERANGE;
return -HUGE_VAL /* minus "infinity" */;
}
else if (p == 1)
{
errno = ERANGE;
return HUGE_VAL /* "infinity" */;
}
else if (p < LOW)
{
/* Rational approximation for lower region */
q = sqrt(-2*log(p));
return (((((c[0]*q+c[1])*q+c[2])*q+c[3])*q+c[4])*q+c[5]) /
((((d[0]*q+d[1])*q+d[2])*q+d[3])*q+1);
}
else if (p > HIGH)
{
/* Rational approximation for upper region */
q = sqrt(-2*log(1-p));
return -(((((c[0]*q+c[1])*q+c[2])*q+c[3])*q+c[4])*q+c[5]) /
((((d[0]*q+d[1])*q+d[2])*q+d[3])*q+1);
}
else
{
/* Rational approximation for central region */
q = p - 0.5;
r = q*q;
return (((((a[0]*r+a[1])*r+a[2])*r+a[3])*r+a[4])*r+a[5])*q /
(((((b[0]*r+b[1])*r+b[2])*r+b[3])*r+b[4])*r+1);
}
}