-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimulationCD.py
511 lines (455 loc) · 30.8 KB
/
simulationCD.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
import numpy as np
from matplotlib import rcParams
import matplotlib.pyplot as plt
import matplotlib.animation as anim
from mpl_toolkits.mplot3d.art3d import Line3DCollection
import scipy.sparse.linalg as spla
# Based on this paper: https://www.cs.cmu.edu/~baraff/sigcourse/notesf.pdf
class Simulation:
class Points:
def __init__(self):
self.pointProperties = None
self.gravityObject = None
def createPoint(self, position, mass=1, velocity=np.zeros((1,3)), force=np.zeros((1,3)), gravity=True):
# Make sure arrays are 2d np arrays
position = np.reshape(position, (1, 3)) # 0-2
velocity = np.reshape(velocity, (1, 3)) # 3-5
force = np.reshape(force, (1, 3)) # 6-8
mass = np.reshape(mass, (1, 1)) # 9
if self.pointProperties is None:
self.pointProperties = np.hstack((position, velocity, force, mass))
else:
self.pointProperties = np.vstack((self.pointProperties, np.hstack((position, velocity, force, mass))))
if gravity:
self.gravityObject.addGravity(self.pointProperties.shape[0] - 1)
return self.pointProperties.shape[0] - 1 # return index of point
def getDeriviative(self, currentPointState):
velocity = currentPointState[:, 3:6]
acceleration = currentPointState[:, 6:9] / np.vstack(currentPointState[:, 9])
return np.hstack((velocity, acceleration))
def addPosition(self, index, position):
self.pointProperties[index, 0:3] += position
def addVelocity(self, index, velocity):
self.pointProperties[index, 3:6] += velocity
def addForce(self, index, force):
self.pointProperties[index, 6:9] += force
def resetForce(self):
self.pointProperties[:, 6:9] = 0
def initGravity(self, gravityObject):
self.gravityObject = gravityObject
class Constraints:
def __init__(self, points, gravityVector=np.array([0, 0, -9.81])):
self.points = points
self.springs = self.Springs(self.points)
self.fixedPoints = self.FixedPoints(self.points)
self.fixedDistances = self.FixedDistances(self.points)
self.gravity = self.Gravity(self.points, gravityVector)
self.points.initGravity(self.gravity)
def getAllConnectedPointIndexes(self):
springIndexes = self.springs.getAllConnectedPointIndexes()
fixedDistanceIndexes = self.fixedDistances.getAllConnectedPointIndexes()
if springIndexes is None:
return fixedDistanceIndexes
elif fixedDistanceIndexes is None:
return springIndexes
else:
indexes = np.vstack((springIndexes, fixedDistanceIndexes))
return indexes
class Springs:
def __init__(self, points):
self.points = points
self.springProperties = None
def createSpring(self, pointIndex1, pointIndex2, springConstant=10, springLength=1, springDamping=1):
if self.springProperties is None:
self.springProperties = np.array([[pointIndex1, pointIndex2, springConstant, springLength, springDamping]])
else:
self.springProperties = np.vstack((self.springProperties, np.array([[pointIndex1, pointIndex2, springConstant, springLength, springDamping]])))
return self.springProperties.shape[0] - 1 # return index of spring
def getForces(self, currentPointState):
forceHolder = np.zeros((self.points.pointProperties.shape[0], 3))
if self.springProperties is None:
return forceHolder
for i in range(self.springProperties.shape[0]):
spring = self.springProperties[i, :]
pointIndex1 = spring[0].astype(int)
pointIndex2 = spring[1].astype(int)
springConstant = spring[2]
springNaturalLength = spring[3]
springDamping = spring[4]
# Calculate force
point1Position = currentPointState[pointIndex1, 0:3]
point2Position = currentPointState[pointIndex2, 0:3]
springVector = point1Position - point2Position
springLength = np.linalg.norm(springVector)
springDirection = springVector / springLength
springForce = -springConstant * (springLength - springNaturalLength) * springDirection
# Calculate damping
point1Velocity = currentPointState[pointIndex1, 3:6]
point2Velocity = currentPointState[pointIndex2, 3:6]
relativeVelocity = point1Velocity - point2Velocity
dampingForce = -springDamping * np.dot(relativeVelocity, springDirection) * springDirection
# Apply forces
forceHolder[pointIndex1, :] += springForce + dampingForce
forceHolder[pointIndex2, :] += -springForce - dampingForce
return forceHolder
def getAllConnectedPointIndexes(self):
if self.springProperties is None:
return None
return self.points.pointProperties[self.springProperties[:, 0:2].astype(int), 0:3]
class FixedPoints:
def __init__(self, points):
self.points = points
self.fixedPoints = None
def createFixedPoint(self, pointIndex):
pointPosition = self.points.pointProperties[pointIndex, 0:3]
if self.fixedPoints is None:
self.fixedPoints = np.reshape(np.hstack((pointIndex, pointPosition)), (1, 4))
else:
self.fixedPoints = np.vstack((self.fixedPoints, np.hstack((pointIndex, pointPosition))))
return self.fixedPoints.shape[0] - 1 # return index of fixed point
def behaviorFunction(self, currentPointState):
# Get the difference between the current position and the fixed position, the array must be 1d vertical and be 3 times the length of the number of fixed points
differenceArray = self.fixedPoints[:, 1:4] - currentPointState[self.fixedPoints[:, 0].astype(int), 0:3]
return differenceArray.flatten()
def behaviorFunctionDerivative(self, currentPointState):
# Get the difference between the velocity of the point and the fixed point
differenceArray = - currentPointState[self.fixedPoints[:, 0].astype(int), 3:6]
return differenceArray.flatten()
def getJacobian(self):
# Get the jacobian of the behavior function
# Return the pointIndexes and the axes that are constrained
indexes = np.tile(np.reshape(self.fixedPoints[:, 0].astype(int), (self.fixedPoints.shape[0], 1)), (1, 3)).reshape(-1, 1) # Get 3x the indexes of the fixed points
axes = np.tile(np.array([0, 1, 2]), (self.fixedPoints.shape[0], 1)).reshape(-1, 1) # Get the axes that are constrained
indexAxis = np.hstack((indexes, axes)) # Combine the indexes and axes
# Jacobian is number of constraints by number of fixed points (both multiplied by 3 due to the 3 dimensions)
return -np.identity(self.fixedPoints.shape[0] * 3), indexAxis
def getJacobianDerivative(self):
a, b = self.getJacobian()
return a, b
class FixedDistances:
def __init__(self, points):
self.points = points
self.fixedDistances = None
def createFixedDistance(self, pointIndex1, pointIndex2, distance=None):
if distance is None:
distance = np.linalg.norm(self.points.pointProperties[pointIndex1, 0:3] - self.points.pointProperties[pointIndex2, 0:3])
if self.fixedDistances is None:
self.fixedDistances = np.reshape(np.hstack((pointIndex1, pointIndex2, distance)), (1, 3))
else:
self.fixedDistances = np.vstack((self.fixedDistances, np.hstack((pointIndex1, pointIndex2, distance))))
return self.fixedDistances.shape[0] - 1 # return index of fixed distance
def behaviorFunction(self, currentPointState):
# Get the distance between the two points then subtract the distance they are supposed to be apart
if self.fixedDistances is None:
return None
return np.linalg.norm(currentPointState[self.fixedDistances[:, 0].astype(int), 0:3] - currentPointState[self.fixedDistances[:, 1].astype(int), 0:3], axis=1) - self.fixedDistances[:, 2]
def behaviorFunctionDerivative(self, currentPointState):
# Get the velocity deriviative
if self.fixedDistances is None:
return None
# Double check this is working
numerators = np.sum(2 * np.multiply((currentPointState[self.fixedDistances[:, 0].astype(int), 0:3] - currentPointState[self.fixedDistances[:, 1].astype(int), 0:3]), (currentPointState[self.fixedDistances[:, 0].astype(int), 3:6] - currentPointState[self.fixedDistances[:, 1].astype(int), 3:6])), axis=1)
denominators = 2 * np.linalg.norm(currentPointState[self.fixedDistances[:, 0].astype(int), 0:3] - currentPointState[self.fixedDistances[:, 1].astype(int), 0:3], axis=1)
return np.divide(numerators, denominators)
def getJacobianRow(self, row, currentPointState):
point1 = currentPointState[self.fixedDistances[row, 0].astype(int), 0:3]
point2 = currentPointState[self.fixedDistances[row, 1].astype(int), 0:3]
distance = np.linalg.norm(point1 - point2)
jacobian = np.array([[(point1[0] - point2[0]), (point1[1] - point2[1]), (point1[2] - point2[2]), (point2[0] - point1[0]), (point2[1] - point1[1]), (point2[2] - point1[2])]]) / distance
axes = np.array([0, 1, 2])
indexes = np.array([[self.fixedDistances[row, 0], axes[0]], [self.fixedDistances[row, 0], axes[1]], [self.fixedDistances[row, 0], axes[2]], [self.fixedDistances[row, 1], axes[0]], [self.fixedDistances[row, 1], axes[1]], [self.fixedDistances[row, 1], axes[2]]])
return jacobian, indexes
def buildGenericJacobian(self, jacobianType, currentPointState):
jacobian = None
pointIndexes = None
if self.fixedDistances is None:
return None, None
for i in range(self.fixedDistances.shape[0]):
if jacobian is None:
jacobian, pointIndexes = jacobianType(i, currentPointState)
else:
jacobianAddon = np.zeros(jacobian.shape[1])
jacobianToAdd, pointIndexesToAdd = jacobianType(i, currentPointState)
for j in range(pointIndexesToAdd.shape[0]):
if (pointIndexes == pointIndexesToAdd[j, :]).all(axis=1).any():
jacobianAddon[(pointIndexes == pointIndexesToAdd[j, :]).all(axis=1)] = jacobianToAdd[:, j]
else:
jacobianAddon = np.hstack((jacobianAddon, jacobianToAdd[:, j]))
pointIndexes = np.vstack((pointIndexes, pointIndexesToAdd[j, :]))
shapeCorrection = np.zeros((jacobian.shape[0], jacobianAddon.shape[0]-jacobian.shape[1]))
jacobian = np.hstack((jacobian, shapeCorrection))
jacobian = np.vstack((jacobian, jacobianAddon))
return jacobian, pointIndexes
def getJacobian(self, currentPointState):
jacobian, pointIndexes = self.buildGenericJacobian(self.getJacobianRow, currentPointState)
pass
return jacobian, pointIndexes
def getJacobianDerivativeRow(self, row, currentPointState):
point1Position = currentPointState[self.fixedDistances[row, 0].astype(int), 0:3]
point2Position = currentPointState[self.fixedDistances[row, 1].astype(int), 0:3]
point1Velocity = currentPointState[self.fixedDistances[row, 0].astype(int), 3:6]
point2Velocity = currentPointState[self.fixedDistances[row, 1].astype(int), 3:6]
distance = np.linalg.norm(point1Position - point2Position)
dervPart = 2 * (point1Position[2] - point2Position[2]) * (point1Velocity[2] - point2Velocity[2]) + 2 * (point1Position[1] - point2Position[1]) * (point1Velocity[1] - point2Velocity[1]) + 2 * (point1Position[0] - point2Position[0]) * (point1Velocity[0] - point2Velocity[0])
jacobianDeriviative = np.array([[((point1Velocity[0] - point2Velocity[0]) / distance) - (((point1Position[0] - point2Position[0]) * dervPart) / (2 * distance**3)),
((point1Velocity[1] - point2Velocity[1]) / distance) - (((point1Position[1] - point2Position[1]) * dervPart) / (2 * distance**3)),
((point1Velocity[2] - point2Velocity[2]) / distance) - (((point1Position[2] - point2Position[2]) * dervPart) / (2 * distance**3)),
((point2Velocity[0] - point1Velocity[0]) / distance) - (((point2Position[0] - point1Position[0]) * dervPart) / (2 * distance**3)),
((point2Velocity[1] - point1Velocity[1]) / distance) - (((point2Position[1] - point1Position[1]) * dervPart) / (2 * distance**3)),
((point2Velocity[2] - point1Velocity[2]) / distance) - (((point2Position[2] - point1Position[2]) * dervPart) / (2 * distance**3))]])
axes = np.array([0, 1, 2])
indexes = np.array([[self.fixedDistances[row, 0], axes[0]], [self.fixedDistances[row, 0], axes[1]], [self.fixedDistances[row, 0], axes[2]], [self.fixedDistances[row, 1], axes[0]], [self.fixedDistances[row, 1], axes[1]], [self.fixedDistances[row, 1], axes[2]]])
return jacobianDeriviative, indexes
def getJacobianDerivative(self, currentPointState):
jacobianDeriviative, pointIndexes = self.buildGenericJacobian(self.getJacobianDerivativeRow, currentPointState)
return jacobianDeriviative, pointIndexes
def getAllConnectedPointIndexes(self):
if self.fixedDistances is None:
return None
return self.points.pointProperties[self.fixedDistances[:, 0:2].astype(int), 0:3]
class Gravity:
def __init__(self, points, gravityVector=np.array([0, 0, -9.81])):
self.points = points
self.pointsWithGravity = None
self.gravityVector = gravityVector
def addGravity(self, pointIndex):
if self.pointsWithGravity is None:
self.pointsWithGravity = np.array([pointIndex])
else:
self.pointsWithGravity = np.hstack((self.pointsWithGravity, np.array([pointIndex])))
def getForces(self):
forceHolder = np.zeros((self.points.pointProperties.shape[0], 3))
forceHolder[self.pointsWithGravity, :] = np.multiply(np.vstack(self.points.pointProperties[self.pointsWithGravity, 9]), self.gravityVector)
return forceHolder
def __init__(self, timeStepSize=0.01, gravityVector=np.array([0, 0, -9.81]), viewingBounds=np.array([[-5, 5], [-5, 5], [-5, 5]]), groundLevel=0):
self.points = self.Points()
self.constraints = self.Constraints(self.points, gravityVector)
self.timeStepSize = timeStepSize
self.viewingBounds = np.array(viewingBounds)
self.groundLevel = groundLevel
self.time = 0
# Set visual properties
self.bgColor = "#030215"
self.axisColor = "#353533"
self.labelColor = "#f2f3d9"
self.pointColor = "#adadad"
self.tensionColor = "#ce2929"
self.compressionColor = "#355fde"
# Create axes
xAxis = np.array([[self.viewingBounds[0, 0], 0, 0], [self.viewingBounds[0, 1], 0, 0]])
yAxis = np.array([[0, self.viewingBounds[1, 0], 0], [0, self.viewingBounds[1, 1], 0]])
zAxis = np.array([[0, 0, self.viewingBounds[2, 0]], [0, 0, self.viewingBounds[2, 1]]])
axes = np.array([xAxis, yAxis, zAxis])
self.axisLines = Line3DCollection(axes, colors=self.axisColor)
# Axis sublines
xSubLines = np.array([[[i, viewingBounds[1, 0], 0], [i, viewingBounds[1, 1], 0]] for i in range(viewingBounds[0, 0]+1, viewingBounds[0, 1])])
ySubLines = np.array([[[viewingBounds[0, 0], i, 0], [viewingBounds[0, 1], i, 0]] for i in range(viewingBounds[1, 0]+1, viewingBounds[1, 1])])
subLines = np.vstack((xSubLines, ySubLines))
self.subLineCollection = Line3DCollection(subLines, colors=self.axisColor, linewidths=0.5)
def createPoint(self, position, mass=1, velocity=np.zeros((1,3)), force=np.zeros((1,3)), gravity=True):
return self.points.createPoint(position, mass, velocity, force, gravity)
def createSpring(self, point1, point2, springConstant=10, springLength=1, springDamping=1):
return self.constraints.springs.createSpring(point1, point2, springConstant, springLength, springDamping)
def createFixedPoint(self, point):
return self.constraints.fixedPoints.createFixedPoint(point)
def createFixedDistance(self, point1, point2, distance=None):
return self.constraints.fixedDistances.createFixedDistance(point1, point2, distance)
def enableGravity(self, point):
self.constraints.gravity.addGravity(point)
def buildJacobian(self, builtJacobian, builtPointIndexes, jacobianToAdd, pointIndexes):
if (builtJacobian is None and jacobianToAdd is None) or ((builtJacobian.shape[0] == 0) and (jacobianToAdd.shape[0] == 0)): # If both jacobians are empty
return None, None
elif builtJacobian is None or (builtJacobian.shape[0] == 0): # If the first jacobian is empty
builtJacobian = jacobianToAdd
builtPointIndexes = pointIndexes
elif jacobianToAdd is None or (jacobianToAdd.shape[0] == 0): # If the second jacobian is empty
pass
else:
jacobianAddon = np.zeros((jacobianToAdd.shape[0], builtJacobian.shape[1])) # Start with a blank matrix the height of the jacobian to add and the width of the built jacobian
for i in range(pointIndexes.shape[0]):
if not (builtPointIndexes == pointIndexes[i]).all(axis=1).any(): # If the point index has not been added yet
jacobianAddon = np.hstack((jacobianAddon, jacobianToAdd[:, i].reshape(-1, 1))) # Add the column of the jacobian to add to the jacobian addon
builtPointIndexes = np.vstack((builtPointIndexes, pointIndexes[i, :])) # Add the point index to the built point indexes
else:
jacobianAddon[:, (builtPointIndexes == pointIndexes[i]).all(axis=1)] = jacobianToAdd[:, i].reshape(-1, 1) # Add the column of the jacobian to add to the jacobian addon
shapeCorrection = np.zeros((builtJacobian.shape[0], jacobianAddon.shape[1]-builtJacobian.shape[1])) # Create a matrix to correct the shape of the jacobian addon
builtJacobian = np.hstack((builtJacobian, shapeCorrection)) # Make the jacobian the right shape to add the jacobian addon
builtJacobian = np.vstack((builtJacobian, jacobianAddon)) # Add the jacobian addon to the jacobian
return builtJacobian, builtPointIndexes
def getJacobians(self, currentPointState):
fixedPointJacobian, fixedPointIndexes = self.constraints.fixedPoints.getJacobian()
fixedDistanceJacobian, fixedDistanceIndexes = self.constraints.fixedDistances.getJacobian(currentPointState)
jacobian, pointIndexes = self.buildJacobian(fixedPointJacobian, fixedPointIndexes, fixedDistanceJacobian, fixedDistanceIndexes)
fixedPointJacobianDeriviative, fixedPointDeriviativeIndexes = self.constraints.fixedPoints.getJacobianDerivative()
fixedDistanceJacobianDeriviative, fixedDistanceDeriviativeIndexes = self.constraints.fixedDistances.getJacobianDerivative(currentPointState)
jacobianDeriviative, a = self.buildJacobian(fixedPointJacobianDeriviative, fixedPointDeriviativeIndexes, fixedDistanceJacobianDeriviative, fixedDistanceDeriviativeIndexes)
pass
return jacobian, jacobianDeriviative, pointIndexes
def getBehaviorFunction(self, currentPointState):
fixedBehaviorFunction = self.constraints.fixedPoints.behaviorFunction(currentPointState)
fixedDistanceBehaviorFunction = self.constraints.fixedDistances.behaviorFunction(currentPointState)
if fixedBehaviorFunction is None or fixedBehaviorFunction.size == 0:
return fixedDistanceBehaviorFunction
elif fixedDistanceBehaviorFunction is None or fixedDistanceBehaviorFunction.size == 0:
return fixedBehaviorFunction
else: # Don't need to worry about both being empty because that is covered by the jacobian check
return np.hstack((fixedBehaviorFunction, fixedDistanceBehaviorFunction))
def getBehaviorFunctionDerivative(self, currentPointState):
fixedBehaviorFunctionDerivative = self.constraints.fixedPoints.behaviorFunctionDerivative(currentPointState)
fixedDistanceBehaviorFunctionDerivative = self.constraints.fixedDistances.behaviorFunctionDerivative(currentPointState)
if fixedBehaviorFunctionDerivative is None or fixedBehaviorFunctionDerivative.size == 0:
return fixedDistanceBehaviorFunctionDerivative
elif fixedDistanceBehaviorFunctionDerivative is None or fixedDistanceBehaviorFunctionDerivative.size == 0:
return fixedBehaviorFunctionDerivative
else: # Don't need to worry about both being empty because that is covered by the jacobian check
return np.hstack((fixedBehaviorFunctionDerivative, fixedDistanceBehaviorFunctionDerivative))
def addStabilityDamping(self, dampingConstant):
velocities = self.points.pointProperties[:, 3:6]
self.points.pointProperties[:, 6:9] += -dampingConstant * velocities
def getRigidConstraints(self, currentPointState):
stabilityConstant = 10
# Solve for rigid constraints
# Get the jacobians of the constraints
jacobian, jacobianDeriviative, pointIndexes = self.getJacobians(currentPointState)
if jacobian is None: # If there are no constraints
return
pointIndexes = pointIndexes.astype(int)
# Get the velocity of the rigid points
velocityIndexes = np.copy(pointIndexes)
velocityIndexes[:, 1] += 3
velocities = None
for i in range(velocityIndexes.shape[0]):
if velocities is None:
velocities = currentPointState[velocityIndexes[i, 0], velocityIndexes[i, 1]]
else:
velocities = np.hstack((velocities, currentPointState[velocityIndexes[i, 0], velocityIndexes[i, 1]]))
# Get forces on the rigid points
forceIndexes = np.copy(pointIndexes)
forceIndexes[:, 1] += 6
forces = None
for i in range(forceIndexes.shape[0]):
if forces is None:
forces = currentPointState[forceIndexes[i, 0], forceIndexes[i, 1]]
else:
forces = np.hstack((forces, currentPointState[forceIndexes[i, 0], forceIndexes[i, 1]]))
# Get the inverse of the diagonal mass matrix
invMass = np.diag(1 / currentPointState[pointIndexes[:, 0], 9])
# Get the energy equation
behaviorPositionError = self.getBehaviorFunction(currentPointState)
# Get the time derivative of the energy equation
behaviorVelocityError = self.getBehaviorFunctionDerivative(currentPointState)
# Solve for lambda using conjugate gradient algorithm
A = np.matmul(np.matmul(jacobian, invMass), np.transpose(jacobian))
b = - np.matmul(jacobianDeriviative, velocities) - np.matmul(np.matmul(jacobian, invMass), forces) - stabilityConstant * behaviorPositionError - stabilityConstant * behaviorVelocityError # Pure magic happens here
solvedLambda = spla.cg(A, b) # OMG, A THING I DON"T NEED TO MAKE LET"S FUCKIN GOOOOOOOOOOOOOOOOOOOOOO
correctionForces = np.matmul(np.transpose(jacobian), solvedLambda[0]) # Solve for the correction forces
forceHolder = np.zeros((currentPointState.shape[0], 3))
forceHolder[forceIndexes[:, 0], pointIndexes[:, 1]] += correctionForces # Apply the correction forces
return forceHolder
def getDeriviative(self, currentPointState):
forces = self.constraints.springs.getForces(currentPointState)
forces += self.constraints.gravity.getForces()
currentPointState[:, 6:9] = forces
forces += self.getRigidConstraints(currentPointState) # This must be after the non-rigid constraints
# self.addStabilityDamping(0.1) # Might not be needed
currentPointState[:, 6:9] = forces
return self.points.getDeriviative(currentPointState)
def RK4Step(self):
dt = self.timeStepSize
self.points.resetForce()
currentPointState = np.copy(self.points.pointProperties) # Point starting point for following calculations
k1 = self.getDeriviative(np.copy(currentPointState))
nextPointState = np.copy(currentPointState)
nextPointState[:, 0:6] += k1 * (dt / 2)
k2 = self.getDeriviative(nextPointState)
nextPointState = np.copy(currentPointState)
nextPointState[:, 0:6] += k2 * (dt / 2)
k3 = self.getDeriviative(nextPointState)
nextPointState = np.copy(currentPointState)
nextPointState[:, 0:6] += k3 * dt
k4 = self.getDeriviative(nextPointState)
deriviative = (k1 + 2 * k2 + 2 * k3 + k4) / 6
self.points.pointProperties[:, 0:6] += deriviative * dt
self.time += dt
pass
def initVisualize(simulation):
fig = plt.figure(facecolor=simulation.bgColor)
ax = fig.add_subplot(projection="3d")
ax.set_xlim3d(simulation.viewingBounds[0, 0], simulation.viewingBounds[0, 1])
ax.set_ylim3d(simulation.viewingBounds[1, 0], simulation.viewingBounds[1, 1])
ax.set_zlim3d(simulation.viewingBounds[2, 0], simulation.viewingBounds[2, 1])
ax.add_collection(simulation.axisLines)
ax.add_collection(simulation.subLineCollection)
ax.scatter(simulation.points.pointProperties[:, 0], simulation.points.pointProperties[:, 1], simulation.points.pointProperties[:, 2], c=simulation.pointColor) # plot points
ax.set_facecolor(simulation.bgColor)
ax.xaxis.set_pane_color((1.0, 1.0, 1.0, 0.0))
ax.yaxis.set_pane_color((1.0, 1.0, 1.0, 0.0))
ax.zaxis.set_pane_color((1.0, 1.0, 1.0, 0.0))
ax.xaxis.line.set_color((1.0, 1.0, 1.0, 0.0))
ax.yaxis.line.set_color((1.0, 1.0, 1.0, 0.0))
ax.zaxis.line.set_color((1.0, 1.0, 1.0, 0.0))
rcParams['axes3d.grid'] = False
rcParams['xtick.color'] = (1.0, 1.0, 1.0, 0.0)
lines = Line3DCollection(simulation.constraints.getAllConnectedPointIndexes(), colors=simulation.pointColor)
ax.add_collection(lines)
ax.annotate("Time: " + str(round(simulation.time, 2)), xy=(0.01, 0.95), xycoords="axes fraction", color=simulation.labelColor)
return fig
def simulationStep(i, simulation, fig):
plt.cla()
simulation.RK4Step()
ax = fig.axes[0]
ax.set_xlim3d(simulation.viewingBounds[0, 0], simulation.viewingBounds[0, 1])
ax.set_ylim3d(simulation.viewingBounds[1, 0], simulation.viewingBounds[1, 1])
ax.set_zlim3d(simulation.viewingBounds[2, 0], simulation.viewingBounds[2, 1])
ax.add_collection(simulation.axisLines)
ax.add_collection(simulation.subLineCollection)
ax.scatter(simulation.points.pointProperties[:, 0], simulation.points.pointProperties[:, 1], simulation.points.pointProperties[:, 2], c=simulation.pointColor) # plot points
lines = Line3DCollection(simulation.constraints.getAllConnectedPointIndexes(), colors=simulation.pointColor)
ax.add_collection(lines)
ax.annotate("Time: " + str(round(simulation.time, 2)), xy=(0.01, 0.95), xycoords="axes fraction", color=simulation.labelColor)
pass
def runSimulation(simulation):
fig = initVisualize(simulation)
ani = anim.FuncAnimation(fig, simulationStep, fargs=(simulation, fig), interval=1)
plt.show()
if __name__ == "__main__":
sim = Simulation(timeStepSize=0.05, viewingBounds=np.array([[-5, 5], [-5, 5], [0, 10]]))
# Suspension
p1 = sim.createPoint([[-1], [-1], [1.9]]) # Lower A Arm
p2 = sim.createPoint([[-1], [1], [2.1]])
p3 = sim.createPoint([[2], [-0.21], [2]])
sim.createFixedDistance(p1, p3)
sim.createFixedDistance(p2, p3)
sim.createFixedPoint(p1)
sim.createFixedPoint(p2)
p4 = sim.createPoint([[-0.5], [-1], [5.1]]) # Upper A Arm
p5 = sim.createPoint([[-0.5], [1], [4.9]])
p6 = sim.createPoint([[1.6], [0.2], [5]])
sim.createFixedDistance(p4, p6)
sim.createFixedDistance(p5, p6)
sim.createFixedPoint(p4)
sim.createFixedPoint(p5)
sim.createFixedDistance(p3, p6)
p7 = sim.createPoint([[-0.5], [0], [5]]) # Spring mounts
p8 = sim.createPoint([[0.5], [0], [2.01]])
sim.createFixedDistance(p1, p8)
sim.createFixedDistance(p2, p8)
sim.createFixedDistance(p3, p8)
sim.createFixedPoint(p7)
sim.createSpring(p7, p8, springConstant=90, springLength=2, springDamping=1)
p9 = sim.createPoint([[2], [0.8], [3]]) # Upright
p10 = sim.createPoint([[2.5], [0], [3.5]])
sim.createFixedDistance(p9, p10)
sim.createFixedDistance(p9, p3)
sim.createFixedDistance(p9, p6)
sim.createFixedDistance(p10, p3)
sim.createFixedDistance(p10, p6)
p11 = sim.createPoint([[-1], [1], [3.5]]) # Steering arm mount
sim.createFixedDistance(p11, p9)
sim.createFixedPoint(p11)
# # Test case
# p1 = sim.createPoint([[0], [0], [4]])
# p2 = sim.createPoint([[3], [3], [4]])
# sim.createFixedDistance(p1, p2)
# sim.createFixedPoint(p1)
runSimulation(sim)