-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathLRAD_MMSE.m
90 lines (86 loc) · 2.99 KB
/
LRAD_MMSE.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
function[X_Estimated]= LRAD_MMSE(H_complex,y,noise_variance,delta)
% Lattice Reduction with MMSE
% Input parameters
% H_complex : complex channel matrix, nRxnT
% y : complex received signal, nRx1
% noise_variance : noise variance
% Output parameters
% X_Estimated : estimated signal, nTx1
%MIMO-OFDM Wireless Communications with MATLAB¢ç Yong Soo Cho, Jaekwon Kim, Won Young Yang and Chung G. Kang
%2010 John Wiley & Sons (Asia) Pte Ltd
Nt = 4; Nr = 4; N = 2*Nt;
H_real=[[real(H_complex) -imag(H_complex)];[imag(H_complex) real(H_complex)]]; % complex channel -> real channel
H=[H_real;sqrt(noise_variance)*eye(N)];
y_real=[real(y);imag(y)]; % complex y -> real y
y=[y_real;zeros(N,1)];
[Q,R,P,p] = SQRD(H); % sorted QR decomposition
[W,L,T] = original_LLL(Q,R,N,delta); % W*L = Q*R*T
H_tilde = H*P*T; % H*P = Q*R
X_temp = inv(H_tilde'*H_tilde)*H_tilde'*y; % MMSE detection
X_temp = round(X_temp); % slicing
X_temp = P*T*X_temp;
for i=1:Nr % real x -> complex x
X_Estimated(i) = X_temp(i)+j*X_temp(i+4);
end
function [Q,R,T] = original_LLL(Q,R,m,delta)
% Input parameters
% Q : orthogonal matrix, nRxnT
% R : R with a large condition number
% m : column length of H
% delta : scaling variable
% Output parameters
% Q : orthogonal matrix, nRxnT
% R : R with a small condition number
% T : unimodular matrix
P=eye(m); T=P; k=2;
while (k <= m)
for j = k-1:-1:1
mu = round(R(j,k)/R(j,j));
if (mu ~= 0)
R(1:j,k)=R(1:j,k)-mu*R(1:j,j);
T(:,k)=T(:,k)-mu*T(:,j);
end
end
if (delta * R(k-1,k-1)^2 > R(k,k)^2 + R(k-1,k)^2) % column change
R(:,[k-1 k])=R(:,[k k-1]);
T(:,[k-1 k])=T(:,[k k-1]);
%calculate Givens rotation matrix such that element R(k,k-1) becomes zero
alpha = R(k-1,k-1)/sqrt(R(k-1:k,k-1).'*R(k-1:k,k-1));
beta = R(k,k-1)/sqrt(R(k-1:k,k-1).'*R(k-1:k,k-1));
theta = [alpha beta; -beta alpha];
R(k-1:k,k-1:m)=theta*R(k-1:k,k-1:m);
Q(:,k-1:k)=Q(:,k-1:k)*theta.';
k=max([k-1 2]);
else
k=k+1;
end
end
function [Q,R,P,p] = SQRD(H)
% Sorted QR decomposition
% Input parameter
% H : complex channel matrix, nRxnT
% Output parameters
% Q : orthogonal matrix, nRxnT
% P : permutation matrix
% p : ordering information
Nt=size(H,2); Nr=size(H,1)-Nt; R=zeros(Nt);
Q=H; p=1:Nt;
for i=1:Nt normes(i)=Q(:,i)'*Q(:,i); end
for i=1:Nt
[mini,k_i]=min(normes(i:Nt)); k_i=k_i+i-1;
R(:,[i k_i])=R(:,[k_i i]);
p(:,[i k_i])=p(:,[k_i i]);
normes(:,[i k_i])=normes(:,[k_i i]);
Q(1:Nr+i-1,[i k_i])=Q(1:Nr+i-1,[k_i i]);
% Wubben's algorithm: does not lead to
% a true QR decomposition of the extended MMSE channel matrix
% Q(Nr+1:Nr+Nt,:) is not triangular but permuted triangular
R(i,i)=sqrt(normes(i));
Q(:,i)=Q(:,i)/R(i,i);
for k=i+1:Nt
R(i,k)=Q(:,i)'*Q(:,k);
Q(:,k)=Q(:,k)-R(i,k)*Q(:,i);
normes(k)=normes(k)-R(i,k)*R(i,k)';
end
end
P=zeros(Nt); for i=1:Nt P(p(i),i)=1; end