-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathagentSimple.py
50 lines (42 loc) · 1.74 KB
/
agentSimple.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
# agentSimple.py
import os
from dotenv import load_dotenv
from langchain.output_parsers import StructuredOutputParser, ResponseSchema
from langchain import PromptTemplate
from langchain.chat_models import ChatOpenAI
load_dotenv() # Load environment variables (like OPENAI_API_KEY)
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
print("[DEBUG agentSimple] OPENAI_API_KEY:",
OPENAI_API_KEY[:6] + "..." if OPENAI_API_KEY else None)
# Define the schema for the transaction data we want
schemas = [
ResponseSchema(name="amount", description="Amount of crypto to transfer."),
ResponseSchema(name="currency",
description="Crypto symbol (e.g. BTC, mUSD)."),
ResponseSchema(name="recipient", description="Recipient wallet address."),
]
output_parser = StructuredOutputParser.from_response_schemas(schemas)
# Create an LLM with your OpenAI API key
llm = ChatOpenAI(temperature=0, openai_api_key=OPENAI_API_KEY)
# Build the parse prompt
prompt_tmpl = PromptTemplate(
template=("Extract transaction details from this request:\n"
"{input}\n"
"{format_instructions}"),
input_variables=["input"],
partial_variables={
"format_instructions": output_parser.get_format_instructions()
},
)
def parse_transaction_prompt(prompt: str):
"""
Use ChatOpenAI to parse the user's prompt into {amount, currency, recipient}.
Returns either a dict or an error string.
"""
try:
formatted = prompt_tmpl.format(input=prompt)
response_text = llm.predict(formatted)
parsed = output_parser.parse(response_text)
return parsed # e.g. {"amount":"0.000001","currency":"BTC","recipient":"0x1234"}
except Exception as e:
return f"❌ Failed to parse prompt: {str(e)}"