-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathsharechat_scrapers.py
445 lines (430 loc) · 19.3 KB
/
sharechat_scrapers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
# Import libraries
import os
import requests
import pandas as pd
import numpy as np
import re
import datetime
from datetime import datetime, date
from IPython.display import Image, HTML
import time
from time import sleep
from random import uniform
import json
import urllib
import uuid
import boto
import boto3
from boto3 import client
from PIL import Image
import io
from dotenv import load_dotenv
load_dotenv()
import pymongo
from pymongo import MongoClient
import wget
import sharechat_helper
import s3_mongo_helper
import tempfile
from tempfile import mkdtemp
import shutil
import subprocess
import logging
import pickle
from tqdm import tqdm
# Trending content scraper
def trending_content_scraper(USER_ID=None, PASSCODE=None, tag_hashes=None, bucket_ids=None, pages=None, mode=None, targeting=None):
if targeting == "bucket":
tag_hashes = sharechat_helper.get_tag_hashes(USER_ID, PASSCODE, bucket_ids)
delay = uniform(10,15)
elif targeting == "tag":
delay = uniform(30,35)
if mode == "archive":
print("Scraping in archive mode")
start_time = time.time()
# Initialize S3 and Mongo DB
print("Initializing ...")
initializationSuccess = False
try:
aws, bucket, s3 = s3_mongo_helper.initialize_s3()
coll = s3_mongo_helper.initialize_mongo()
initializationSuccess = True
print("Initialized successfully")
except Exception as e:
print("Initialization failure")
print(logging.traceback.format_exc())
# Scrape data from Sharechat tags
if initializationSuccess:
print("Scraping in progress ...")
sharechat_df = sharechat_helper.get_trending_data(
USER_ID,
PASSCODE,
tag_hashes,
pages,
delay)
if len(sharechat_df) < 1:
raise ValueError("get_data() returned empty dataframe. No posts were scraped.")
else:
# Save data locally
sharechat_df.to_pickle("sharechat_df.pkl")
# Save data to S3 & Mongo DB
s3UploadSuccess = False
try:
print("S3 upload in progress ...")
sharechat_df = sharechat_helper.sharechat_s3_upload(sharechat_df, aws, bucket, s3) # the returned df includes s3 urls
s3UploadSuccess = True
print("Data uploaded to S3")
except Exception as e:
print("S3 upload failed")
print(logging.traceback.format_exc())
pass
if s3UploadSuccess:
try:
print("HTML preview file creation in progress ...")
sharechat_df, sharechat_df_html = sharechat_helper.get_thumbnails_from_s3(sharechat_df)
with open("sharechat_trending_data_preview.html", "w") as f:
f.write(sharechat_df_html.data)
print("HTML preview file created")
except Exception as e:
print("HTML preview file creation failed")
print(logging.traceback.format_exc())
pass
try:
print("MongoDB upload in progress ...")
sharechat_helper.sharechat_mongo_upload(sharechat_df, coll)
print("Data uploaded to MongoDB")
except Exception as e:
print("MongoDB upload failed")
print(logging.traceback.format_exc())
pass
else:
pass
try:
print("CSV file creation in progress ... ")
sharechat_df.to_csv("sharechat_trending_data.csv")
print("CSV file created")
print("{} posts scraped".format(len(sharechat_df)))
except Exception as e:
print("CSV file creation failed")
print(logging.traceback.format_exc())
pass
print("Scraping complete")
print("Time taken: %s seconds" % (time.time() - start_time))
return sharechat_df
elif mode == "local":
print("Scraping in local mode")
start_time = time.time()
print("Scraping in progress ...")
sharechat_df = sharechat_helper.get_trending_data(
USER_ID,
PASSCODE,
tag_hashes,
pages,
delay)
if len(sharechat_df) < 1:
raise ValueError("get_data() returned empty dataframe. No posts were scraped.")
else:
# Save data locally
sharechat_df.to_pickle("sharechat_df.pkl")
try:
print("HTML preview file creation in progress ...")
sharechat_df, sharechat_df_html = sharechat_helper.get_thumbnails_from_sharechat(sharechat_df)
with open("sharechat_trending_data_preview.html", "w") as f:
f.write(sharechat_df_html.data)
print("HTML preview file created")
except Exception as e:
print("HTML preview file creation failed")
print(logging.traceback.format_exc())
pass
try:
print("CSV file creation in progress ... ")
sharechat_df.to_csv("sharechat_trending_data.csv")
print("CSV file created")
print("{} posts scraped".format(len(sharechat_df)))
except Exception as e:
print("CSV file creation failed")
print(logging.traceback.format_exc())
pass
print("Scraping complete")
print("Time taken: %s seconds" % (time.time() - start_time))
return sharechat_df
# Fresh content scraper
def fresh_content_scraper(USER_ID=None, PASSCODE=None, tag_hashes=None, bucket_ids=None, pages=None, unix_timestamp=None, mode=None, targeting=None):
if targeting == "bucket":
tag_hashes = sharechat_helper.get_tag_hashes(USER_ID, PASSCODE, bucket_ids)
delay = uniform(10,15)
elif targeting == "tag":
delay = uniform(30,35)
if mode == "archive":
print("Scraping in archive mode")
start_time = time.time()
# Initialize S3 and Mongo DB
print("Initializing ...")
initializationSuccess = False
try:
aws, bucket, s3 = s3_mongo_helper.initialize_s3()
coll = s3_mongo_helper.initialize_mongo()
initializationSuccess = True
print("Initialized successfully")
except Exception as e:
print("Initialization failure")
print(logging.traceback.format_exc())
# Scrape data from Sharechat tags
if initializationSuccess:
print("Scraping in progress ...")
sharechat_df = sharechat_helper.get_fresh_data(
USER_ID,
PASSCODE,
tag_hashes,
pages,
unix_timestamp,
delay)
if len(sharechat_df) < 1:
raise ValueError("get_data() returned empty dataframe. No posts were scraped.")
else:
# Save data locally
sharechat_df.to_pickle("sharechat_df.pkl")
# Save data to S3 & Mongo DB
s3UploadSuccess = False
try:
print("S3 upload in progress ...")
sharechat_df = sharechat_helper.sharechat_s3_upload(sharechat_df, aws, bucket, s3) # the returned df includes s3 urls
s3UploadSuccess = True
print("Data uploaded to S3")
except Exception as e:
print("S3 upload failed")
print(logging.traceback.format_exc())
pass
if s3UploadSuccess:
try:
print("HTML preview file creation in progress ...")
sharechat_df, sharechat_df_html = sharechat_helper.get_thumbnails_from_s3(sharechat_df)
with open("sharechat_fresh_data_preview.html", "w") as f:
f.write(sharechat_df_html.data)
print("HTML preview file created")
except Exception as e:
print("HTML preview file creation failed")
print(logging.traceback.format_exc())
pass
try:
print("MongoDB upload in progress ...")
sharechat_helper.sharechat_mongo_upload(sharechat_df, coll)
print("Data uploaded to MongoDB")
except Exception as e:
print("MongoDB upload failed")
print(logging.traceback.format_exc())
pass
else:
pass
try:
print("CSV file creation in progress ... ")
sharechat_df.to_csv("sharechat_fresh_data.csv")
print("CSV file created")
print("{} posts scraped".format(len(sharechat_df)))
except Exception as e:
print("CSV file creation failed")
print(logging.traceback.format_exc())
pass
print("Scraping complete")
print("Time taken: %s seconds" % (time.time() - start_time))
return sharechat_df
elif mode == "local":
print("Scraping in local mode")
start_time = time.time()
print("Scraping in progress ...")
sharechat_df = sharechat_helper.get_fresh_data(
USER_ID,
PASSCODE,
tag_hashes,
pages,
unix_timestamp,
delay)
if len(sharechat_df) < 1:
raise ValueError("get_data() returned empty dataframe. No posts were scraped.")
else:
# Save data locally
sharechat_df.to_pickle("sharechat_df.pkl")
try:
print("HTML preview file creation in progress ...")
sharechat_df, sharechat_df_html = sharechat_helper.get_thumbnails_from_sharechat(sharechat_df)
with open("sharechat_fresh_data_preview.html", "w") as f:
f.write(sharechat_df_html.data)
print("HTML preview file created")
except Exception as e:
print("HTML preview file creation failed")
print(logging.traceback.format_exc())
pass
try:
print("CSV file creation in progress ... ")
sharechat_df.to_csv("sharechat_fresh_data.csv")
print("CSV file created")
print("{} posts scraped".format(len(sharechat_df)))
except Exception as e:
print("CSV file creation failed")
print(logging.traceback.format_exc())
pass
print("Scraping complete")
print("Time taken: %s seconds" % (time.time() - start_time))
return sharechat_df
# ML scraper (modified version of trending content scraper)
def ml_scraper(USER_ID=None, PASSCODE=None, tag_hashes=None, bucket_ids=None, pages=None, mode=None, targeting=None):
if targeting == "bucket":
tag_hashes = sharechat_helper.get_tag_hashes(USER_ID, PASSCODE, bucket_ids)
delay = uniform(10,15)
elif targeting == "tag":
delay = uniform(30,35)
if mode == "archive":
print("Scraping in archive mode")
start_time = time.time()
print("Initializing ...")
initializationSuccess = False
try:
coll = sharechat_helper.ml_initialize_mongo()
aws, bucket, s3 = sharechat_helper.ml_initialize_s3()
initializationSuccess = True
print("Initialized successfully")
except Exception as e:
print("Initialization failure")
print(logging.traceback.format_exc())
# Scrape data from tags
if initializationSuccess:
print("Scraping in progress ...")
sharechat_df = sharechat_helper.get_trending_data(
USER_ID,
PASSCODE,
tag_hashes,
pages,
delay)
if len(sharechat_df) < 1:
raise ValueError("get_data() returned empty dataframe. No posts were scraped.")
else:
# Save data locally
sharechat_df.to_pickle("sharechat_df.pkl")
s3UploadSuccess = False
# Save data to S3 & Mongo DB
try:
print("S3 upload in progress ... ")
sharechat_df = sharechat_helper.ml_sharechat_s3_upload(sharechat_df, aws, bucket, s3)
s3UploadSuccess = True
print("Data uploaded to S3")
except Exception as e:
print("S3 upload failed")
print(logging.traceback.format_exc())
pass
if s3UploadSuccess:
try:
print("HTML preview file creation in progress ...")
sharechat_df, sharechat_df_html = sharechat_helper.get_thumbnails_from_s3(sharechat_df)
with open("sharechat_ml_data_preview.html", "w") as f:
f.write(sharechat_df_html.data)
print("HTML preview file created")
except Exception as e:
print("HTML preview file creation failed")
print(logging.traceback.format_exc())
pass
try:
print("MongoDB upload in progress ...")
sharechat_helper.sharechat_mongo_upload(sharechat_df, coll)
print("Data uploaded to MongoDB")
except Exception as e:
print("MongoDB upload failed")
print(logging.traceback.format_exc())
pass
else:
pass
try:
print("CSV file creation in progress ... ")
sharechat_df.to_csv("sharechat_ml_data.csv")
print("CSV file created")
print("{} posts scraped".format(len(sharechat_df)))
except Exception as e:
print("CSV file creation failed")
print(logging.traceback.format_exc())
pass
print("Scraping complete")
print("Time taken: %s seconds" % (time.time() - start_time))
return sharechat_df
elif mode == "local":
print("Scraping in local mode")
start_time = time.time()
print("Scraping in progress ...")
sharechat_df = sharechat_helper.get_trending_data(
USER_ID,
PASSCODE,
tag_hashes,
pages,
delay)
if len(sharechat_df) < 1:
raise ValueError("get_data() returned empty dataframe. No posts were scraped.")
else:
# Save data locally
sharechat_df.to_pickle("sharechat_df.pkl")
try:
print("HTML preview file creation in progress ...")
sharechat_df, sharechat_df_html = sharechat_helper.get_thumbnails_from_sharechat(sharechat_df)
with open("sharechat_ml_data_preview.html", "w") as f:
f.write(sharechat_df_html.data)
print("HTML preview file created")
except Exception as e:
print("HTML preview file creation failed")
print(logging.traceback.format_exc())
pass
try:
print("CSV file creation in progress ... ")
sharechat_df.to_csv("sharechat_ml_data.csv")
print("CSV file created")
print("{} posts scraped".format(len(sharechat_df)))
except Exception as e:
print("CSV file creation failed")
print(logging.traceback.format_exc())
pass
print("Scraping complete")
print("Time taken: %s seconds" % (time.time() - start_time))
return sharechat_df
# Virality metrics scraper
def virality_scraper(USER_ID=None, PASSCODE=None, data_path=None):
print("Loading data ...")
start_time = time.time()
# Load data
df = pd.read_csv(data_path)
df.reset_index(drop=True, inplace=True)
today = str(date.today())
# Get timestamp for day t
df["timestamp"] = pd.to_datetime(df["timestamp"])
timestamp = df["timestamp"][0]
# Calculate days since t
diff = str((pd.Timestamp("today")-timestamp).days)
# Initialize df to hold current metrics
result_df = pd.DataFrame(columns = ["comments_t+"+diff,
"external_shares_t+"+diff,
"likes_t+"+diff,
"reposts_t+"+diff,
"views_t+"+diff])
# Get current virality metrics for each post
print("Scraping current virality metrics ...")
failed = 0
with tqdm(total=len(df)) as pbar:
for i in df["post_permalink"]:
try:
result = sharechat_helper.get_current_metrics(USER_ID, PASSCODE, i)
result_df = result_df.append(pd.DataFrame(result,
columns = result_df.columns,
), sort = True)
pbar.update(1)
except Exception:
result_df = result_df.append(pd.Series(), ignore_index=True)
failed += 1
pass
pbar.update(1)
# Save data locally
result_df.to_pickle("result_df.pkl")
# Add scraped metrics to data
new_df = pd.concat([df.reset_index(drop=True), result_df.reset_index(drop=True)], axis = 1)
# Save combined data
"Saving scraped metrics ..."
sharechat_helper.save_updated_df(new_df, today)
total = len(df)
print("Scraping complete")
print("Updated virality metrics for {} out of {} posts".format(total-failed, total))
print("Time taken: %s seconds" % (time.time() - start_time))
return new_df