-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsvm.py
68 lines (50 loc) · 2.26 KB
/
svm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
#!/usr/bin/env python
# coding: utf-8
# Imports
from sklearn import svm
from sklearn.metrics import accuracy_score
from sklearn.metrics import classification_report
from timer import Timer
import globals
# Call function train
def train(gama,
descriptor_name,
model_name):
with Timer() as timer:
# SVM Model
SVM = svm.SVC(gama)
SVM.fit(globals.train_feature_vec[0],
globals.train_feature_vec[1])
print('%s %s\n' % (descriptor_name, model_name), file = globals.file)
print('Training Set Evaluation\n', file = globals.file)
print('Train score: %.2f\n' % (SVM.score(globals.train_feature_vec[0],
globals.train_feature_vec[1])),
file = globals.file)
return SVM
print('Time:', timer, '\n', file = globals.file)
# Call function test
def test(model,
descriptor_name,
model_name):
with Timer() as timer:
# SVM Model
print('%s %s\n' % (descriptor_name, model_name), file = globals.file)
print('Testing Set Evaluation\n', file = globals.file)
SVM_predict = model.predict(globals.test_feature_vec[0])
print('Test score: %.2f\n' % (accuracy_score(globals.test_feature_vec[1],
SVM_predict)),
file = globals.file)
return SVM_predict
print('Time:', timer, '\n', file = globals.file)
# Call function classificationReport
def classificationReport(model,
predict,
descriptor_name,
model_name):
# SVM Model
print('%s %s\n' % (descriptor_name, model_name), file = globals.file)
# Classification report for Classifier
print("Classification report for Classifier: \n\n%s: \n\n %s" % (model,
classification_report(globals.test_feature_vec[1],
predict)),
file = globals.file)