-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathauTraceBack.py
455 lines (361 loc) · 16.7 KB
/
auTraceBack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText
from Strategy import Strategy
from influxdb import InfluxDBClient
import datetime
import pandas as pd
import smtplib
import calculate_equity
_DIR = './record/'
def calculate_diff(etf_data, au_data):
"""
计算基差数据
:param etf_data:
:param au_data:
:return:
"""
basis = []
# 获取时间同步后的数据
syc_etf_data, syc_au_data, length = sync_timestamp(etf_data, au_data)
if length == 0:
return
for i in range(0, length):
# 取出时间
t = syc_etf_data[i]["time"]
# etf均价
etf_avg_price = round((float(syc_etf_data[i]["ask_1"]) + float(syc_etf_data[i]["bid_1"])) / 2, 4)
etf_avg_price_100 = round(etf_avg_price * 100, 4)
# 期货均价
au_avg_price = round((float(syc_au_data[i]["ask_1"]) + float(syc_au_data[i]["bid_1"])) / 2, 4)
# 基差
diff = round(etf_avg_price_100 - au_avg_price, 4)
basis.append({"time": t, "etf_avg_price": etf_avg_price, "etf_avg_price*100": etf_avg_price_100,
"au_avg_price": au_avg_price, "diff": diff})
return basis
def sync_timestamp(etf_data, au_data):
"""
将查询到的现货和期货数据在时间上进行同步
:param etf_data: 查询到的现货数据
:param au_data: 查询到的期货数据
:return: 时间同步以后的现货和期货数据
"""
etf_time = []
au_time = []
for d in etf_data:
etf_time.append(d["time"])
for d in au_data:
au_time.append(d["time"])
etf_time = set(etf_time)
au_time = set(au_time)
# 同步的时间点
comm_time = etf_time & au_time
new_etf_data = remove_data(etf_data, comm_time)
new_au_data = remove_data(au_data, comm_time)
return new_etf_data, new_au_data, len(comm_time)
def remove_data(data, comm_time):
"""
从原始数据中移除不同步的数据点
:param data: 原始数据
:param comm_time: 同步的时间点
:return: 移除不同步的时间点后的数据
"""
new_data = []
for d in data:
if d["time"] in comm_time:
new_data.append(d)
return new_data
def divide_data(md_data):
"""
根据品种划分数据
:param md_data:
:return:
"""
etf_data = []
au_data = []
for d in md_data:
if d["symbol"] == "518880.SH":
etf_data.append(d)
else:
au_data.append(d)
return etf_data, au_data
def interpolate_value(origin_etf_data, origin_au_data):
"""
插值缺失的行情数据,并移除非交易时间的数据点
:param origin_etf_data:
:param origin_au_data:
:return:
"""
au_symbol = "au2002.SHFE"
new_etf_data = []
new_au_data = []
for i in range(0, len(origin_etf_data) - 1):
# 比较当前行情数据点的时间和后一个行情数据点的时间差,判断是否需要插值
new_etf_data.append(origin_etf_data[i])
time_f = datetime.datetime.strptime(origin_etf_data[i]["time"], "%Y-%m-%dT%H:%M:%SZ")
time_l = datetime.datetime.strptime(origin_etf_data[i + 1]["time"], "%Y-%m-%dT%H:%M:%SZ")
interval = (time_l - time_f).seconds
# 补充缺失值,行情间隔为3s,行情间隔超过五分钟的不进行插值
if 3 < interval < 300:
diff = int(interval / 3)
# print(diff)
# ask_1 = origin_etf_data[i]["ask_1"]
# bid_1 = origin_etf_data[i]["bid_1"]
# print(origin_etf_data[i])
for j in range(0, diff - 1):
t = datetime.datetime.strftime(time_f + datetime.timedelta(seconds=3 * (j + 1)), "%Y-%m-%dT%H:%M:%SZ")
new_etf_data.append(
{"time": t, "bid_1": origin_etf_data[i]["bid_1"], "bid_v_1": origin_etf_data[i]["bid_v_1"],
"bid_2": origin_etf_data[i]["bid_2"], "bid_v_2": origin_etf_data[i]["bid_v_2"],
"ask_1": origin_etf_data[i]["ask_1"], "ask_v_1": origin_etf_data[i]["ask_v_1"],
"ask_2": origin_etf_data[i]["ask_2"], "ask_v_2": origin_etf_data[i]["ask_v_2"],
"symbol": "518880.SH"})
# 插入最后一个点
new_etf_data.append(origin_etf_data[-1])
# 移除非交易时间的行情点
new_etf_data = remove_points(new_etf_data)
for i in range(0, len(origin_au_data) - 1):
new_au_data.append(origin_au_data[i])
time_f = datetime.datetime.strptime(origin_au_data[i]["time"], "%Y-%m-%dT%H:%M:%SZ")
time_l = datetime.datetime.strptime(origin_au_data[i + 1]["time"], "%Y-%m-%dT%H:%M:%SZ")
interval = (time_l - time_f).seconds
# 补充缺失值,行情间隔为1s,行情间隔超过五分钟的不进行插值
if 1 < interval < 300:
# ask_1 = origin_au_data[i]["ask_1"]
# bid_1 = origin_au_data[i]["bid_1"]
for j in range(0, interval - 1):
t = datetime.datetime.strftime(time_f + datetime.timedelta(seconds=(j + 1)), "%Y-%m-%dT%H:%M:%SZ")
new_au_data.append(
{"time": t, "bid_1": origin_au_data[i]["bid_1"], "bid_v_1": origin_au_data[i]["bid_v_1"],
"bid_2": origin_au_data[i]["bid_2"], "bid_v_2": origin_au_data[i]["bid_v_2"],
"ask_1": origin_au_data[i]["ask_1"], "ask_v_1": origin_au_data[i]["ask_v_1"],
"ask_2": origin_au_data[i]["ask_2"], "ask_v_2": origin_au_data[i]["ask_v_2"],
"symbol": au_symbol})
# 插入最后一个点
new_au_data.append(origin_au_data[-1])
# 移除非交易时间的行情点
new_au_data = remove_points(new_au_data)
# print(len(new_au_data))
return new_etf_data, new_au_data
def remove_points(origin_data):
"""
移除不在交易时间里的点
:param origin_data:
:return:
"""
new_data = []
for d in origin_data:
t = datetime.datetime.strptime(d["time"], "%Y-%m-%dT%H:%M:%SZ").time().strftime("%H%M%S")
t = int(t)
# 去掉非交易时间的数据,对应的是UTC的时间
if t < 13000 or (21500 < t < 23000) or (33000 < t < 53000) or t > 70000:
# origin_data.remove(d)
pass
else:
# t += 80000
# print(t)
new_data.append(d)
return new_data
def get_rt_data(time):
"""
根据时间点获取对应的实时行情数据
Note: 选择的数据库是au_md_trace_back,可能是插值的数据
:param time:
:return:
"""
# 转化为对应时间的UTC时间
time = time - datetime.timedelta(hours=8)
time = time.strftime("%Y-%m-%dT%H:%M:%SZ")
query_sql = "SELECT ask_1, ask_2, bid_1, bid_2, ask_v_1, ask_v_2, bid_v_1, bid_v_2, symbol FROM au_md_trace_back WHERE time ='" + time + "'"
# print(query_sql)
data = list(client.query(query_sql))[0]
# print(data)
for d in data:
if d["symbol"] == "518880.SH":
etf_data = d
else:
au_data = d
return etf_data, au_data
def write_trace_back_md_data(etf_md_data, au_md_data):
"""
把插值后的行情数据写进另一个数据库里
Note:没有标记插值
:param etf_md_data:
:param au_md_data:
:return:
"""
w_data = []
raw_md_data = etf_md_data + au_md_data
for d in raw_md_data:
w_data.append({
"measurement": "au_md_trace_back",
"tags": {
"symbol": d["symbol"]
},
"time": d["time"],
"fields": {
"ask_1": float(d["ask_1"]),
"ask_2": float(d["ask_2"]),
"bid_1": float(d["bid_1"]),
"bid_2": float(d["bid_2"]),
"ask_v_1": d["ask_v_1"],
"ask_v_2": d["ask_v_2"],
"bid_v_1": d["bid_v_1"],
"bid_v_2": d["bid_v_2"]
}
})
# print(raw_md_data)
try:
client.write_points(w_data)
except Exception as err:
print(str(err))
if __name__ == '__main__':
influxdb_url = ""
port = 80
database = "test"
username = "root"
password = "root"
client = InfluxDBClient(host=influxdb_url, port=port, username=username, password=password, database=database,
timeout=10)
# TODO: 判断是否是交易日,作为定时任务进行回测
# 历史数据点不足3900的时候,要用前两天的,不然盘头的信号触发不了交易
start_date = "2019-12-26"
end_date = "2019-12-30"
# 取出昨日数据和今日数据
query_history = "SELECT ask_1, ask_2, bid_1, bid_2, ask_v_1, ask_v_2, bid_v_1, bid_v_2, symbol FROM au_md where time >= '" + start_date + "' and time < '" + end_date + "' ORDER BY time ASC"
query_today = "SELECT ask_1, ask_2, bid_1, bid_2, ask_v_1, ask_v_2, bid_v_1, bid_v_2, symbol FROM au_md where time >= '" + end_date + "'"
# query_today = "SELECT ask_1, ask_2, bid_1, bid_2, ask_v_1, ask_v_2, bid_v_1, bid_v_2, symbol FROM au_md where time >= '" + end_date + "' and time < '2019-12-21'"
# print(query_history)
# print(query_today)
try:
history_md_data = list(client.query(query_history))[0]
today_md_data = list(client.query(query_today))[0]
except Exception as err:
print(str(str))
# 根据品种划分数据
history_etf_data, history_au_data = divide_data(history_md_data)
today_etf_data, today_au_data = divide_data(today_md_data)
# 插值历史数据,计算基差
history_etf_data, history_au_data = interpolate_value(history_etf_data, history_au_data)
# 记录补充缺失值以后的历史行情数据
write_trace_back_md_data(history_etf_data, history_au_data)
# 获取同步行情数据和同步数据的长度
history_diff_data = calculate_diff(history_etf_data, history_au_data)
print("etf data len: {} | diff data len {}".format(len(history_etf_data), len(history_diff_data)))
# 插值今日数据,同步数据
today_etf_data, today_au_data = interpolate_value(today_etf_data, today_au_data)
# 记录补充缺失值以后的今日行情数据
write_trace_back_md_data(today_etf_data, today_au_data)
# 获取同步行情数据和同步数据的长度
today_etf_data, today_au_data, length = sync_timestamp(today_etf_data, today_au_data)
print("today: etf data len: {} | au data len {}".format(len(today_etf_data), len(today_au_data)))
strategy = Strategy()
# 喂历史基差数据
strategy.get_history_prem(history_diff_data)
print(strategy.price_log["prem"])
# 添加昨日未平仓交易记录
history_open_t = input("历史开仓时间:\n")
if history_open_t:
try:
# 开仓时间
open_t = datetime.datetime.strptime(history_open_t, "%Y-%m-%dT%H:%M:%SZ")
ETF_p = input("开仓ETF价格:")
F_p = input("开仓期货价格:")
side = input("开仓方向(LONG/SHORT):")
strategy.get_history_open(open_t, ETF_p, F_p, side)
except Exception as err:
print("错误的时间格式")
print(str(err))
for i in range(0, length):
t = today_etf_data[i]["time"]
# UTC时间转为北京时间
time = datetime.datetime.strptime(t, "%Y-%m-%dT%H:%M:%SZ") + datetime.timedelta(hours=8)
# 喂今日实时行情数据,进行回测
strategy.on_market_update(time, today_etf_data[i]["bid_1"], today_etf_data[i]["ask_1"],
today_au_data[i]["bid_1"],
today_au_data[i]["ask_1"])
columns = ["时间", "etf价格", "au价格", "方向", "仓位", "ETF卖一", "ETF卖一量", "ETF卖二", "ETF卖二量", "ETF买一", "ETF买一量", "ETF买二",
"ETF买二量", "期货卖一", "期货卖一量", "期货卖二", "期货卖二量", "期货买一", "期货买一量", "期货买二", "期货买二量"]
record = pd.DataFrame(columns=columns)
# 保存交易日志
trade_map = {"LONG": "买入现货,卖出期货", "SHORT": "卖出现货,买入期货"}
log = strategy.log
for i in range(len(strategy.log)):
# 获取开平仓时间
open_t = log[i][0]
close_t = log[i][4]
# 保存开平仓交易日志,开仓和平仓记录分开保存
# 获取对应时间的实时行情数据
etf_data, au_data = get_rt_data(open_t)
record.loc[2 * i] = [open_t, log[i][1], log[i][2], trade_map[log[i][3]], 1, etf_data["ask_1"],
etf_data["ask_v_1"], etf_data["ask_2"], etf_data["ask_v_2"], etf_data["bid_1"],
etf_data["bid_v_1"], etf_data["bid_2"], etf_data["bid_v_2"], au_data["ask_1"],
au_data["ask_v_1"], au_data["ask_2"], au_data["ask_v_2"], au_data["bid_1"],
au_data["bid_v_1"], au_data["bid_2"], au_data["bid_v_2"]]
etf_data, au_data = get_rt_data(close_t)
record.loc[2 * i + 1] = [close_t, log[i][5], log[i][6], trade_map[log[i][7]], 0, etf_data["ask_1"],
etf_data["ask_v_1"], etf_data["ask_2"], etf_data["ask_v_2"], etf_data["bid_1"],
etf_data["bid_v_1"], etf_data["bid_2"], etf_data["bid_v_2"], au_data["ask_1"],
au_data["ask_v_1"], au_data["ask_2"], au_data["ask_v_2"], au_data["bid_1"],
au_data["bid_v_1"], au_data["bid_2"], au_data["bid_v_2"]]
# 如果有未平的单子,添加到日志
open_log = strategy.open_log
if len(open_log) > len(log):
open_t = open_log[-1][0]
etf_data, au_data = get_rt_data(open_t)
record.loc[2 * (len(open_log) - 1)] = [open_t, open_log[-1][1], open_log[-1][2], trade_map[open_log[-1][3]], 1,
etf_data["ask_1"],
etf_data["ask_v_1"], etf_data["ask_2"], etf_data["ask_v_2"],
etf_data["bid_1"],
etf_data["bid_v_1"], etf_data["bid_2"], etf_data["bid_v_2"],
au_data["ask_1"],
au_data["ask_v_1"], au_data["ask_2"], au_data["ask_v_2"],
au_data["bid_1"],
au_data["bid_v_1"], au_data["bid_2"], au_data["bid_v_2"]]
# 交易日志
print("交易日志:", log)
# 开仓日志
print("开仓日志:", open_log)
print(record)
# 保存的文件名
file_name = "Record-%s-3std.xlsx" % end_date
# 保存的文件路径
file_path = _DIR + file_name
# 有开仓的情况下
if len(open_log) > 0:
# 保存为Excel文件
record.to_excel(file_path, index=False, encoding="utf-8")
# 计算当日权益
take_net = float(input("昨日take净资产:"))
make_net = float(input("昨日make净资产:"))
cal = calculate_equity.calculate_equity(file_path, take_net, make_net)
cal.calculate()
cal.save_result(file_path)
# 发送附件
message = MIMEMultipart('related')
input("---------------------")
# 读取附件
# file_name = "Record-" + end_date + "-3std.xlsx"
message_xlsx = MIMEText(open(file_path, "rb").read(), "base64", "utf-8")
# 设置附件的名字
message_xlsx["Content-Disposition"] = "attachment;filename= %s" % file_name
message.attach(message_xlsx)
# 设置邮件信息
message["From"] = "Fedge"
message["To"] = "Fedge"
message["Subject"] = end_date + " Record"
# 连接邮箱服务器
smtp = smtplib.SMTP_SSL()
smtp.connect(host="smtp.exmail.qq.com", port="465")
print("connect")
# 登录
username = input("Please input the username\n")
password = input("Please input the password\n")
smtp.login(user=username, password=password)
print("login")
# 发送邮件
smtp.sendmail(username, "", message.as_string())
smtp.sendmail(username, "", message.as_string())
smtp.sendmail(username, "", message.as_string())
print("send")
# 关闭服务
smtp.quit()