-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhyperopt_search.py
394 lines (336 loc) · 17.5 KB
/
hyperopt_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
from hyperopt import fmin, tpe, STATUS_OK, Trials
import numpy as np
#np.random.seed(10)
import utils
import tensorflow as tf
from keras.callbacks import EarlyStopping
from keras.layers import Lambda, Dense, Input, Conv2D, BatchNormalization, Flatten, Concatenate, Dropout, MaxPool2D
from keras.models import Model
from keras.optimizers import Adam
from keras.preprocessing.image import ImageDataGenerator
import sys
import os
import datetime
import space_declarations
from sklearn.model_selection import train_test_split
from keras import regularizers
# fit globals
callbacks = [EarlyStopping(monitor='val_mean_absolute_error', min_delta=0.05, patience=10, restore_best_weights=True)]
fit_kwargs = {'epochs': 2000,
'verbose': 2,
'callbacks': callbacks}
def mlp_create_model(space):
# make model
input_ = Input(shape=x_train[0].shape)
x = Dense(space['n_nodes_layer1'], activation=space['layer1_activation'])(input_)
if space['num_layers']['layers'] == 'two':
x = Dense(space['num_layers']['nodes2'], activation=space['num_layers']['activation2'])(x)
elif space['num_layers']['layers'] == 'three':
x = Dense(space['num_layers']['nodes2'], activation=space['num_layers']['activation2'])(x)
x = Dense(space['num_layers']['nodes3'], activation=space['num_layers']['activation3'])(x)
elif space['num_layers']['layers'] == 'four':
x = Dense(space['num_layers']['nodes2'], activation=space['num_layers']['activation2'])(x)
x = Dense(space['num_layers']['nodes3'], activation=space['num_layers']['activation3'])(x)
x = Dense(space['num_layers']['nodes4'], activation=space['num_layers']['activation4'])(x)
elif space['num_layers']['layers'] == 'five':
x = Dense(space['num_layers']['nodes2'], activation=space['num_layers']['activation2'])(x)
x = Dense(space['num_layers']['nodes3'], activation=space['num_layers']['activation3'])(x)
x = Dense(space['num_layers']['nodes4'], activation=space['num_layers']['activation4'])(x)
x = Dense(space['num_layers']['nodes5'], activation=space['num_layers']['activation5'])(x)
x = Dense(1, activation='linear')(x)
model = Model(inputs=input_, outputs=x)
model.compile(optimizer=Adam(lr=space['learning_rate']), loss='mean_squared_error', metrics=['mae'])
model.fit(x_train, y_train, validation_data=(x_val, y_val), batch_size=space['batch_size'], **fit_kwargs)
val_mean_absolute_error = model.evaluate(x_val, y_val)[1]
space['val_mean_absolute_error'] = val_mean_absolute_error
print(f'\n{space}')
print('Best val mean absolute error of epoch:', val_mean_absolute_error)
# colnames for csv
col_names = ['val_mean_absolute_error', 'learning_rate', 'batch_size', 'layers', 'n_nodes_layer1',
'layer1_activation', 'nodes2', 'activation2', 'nodes3', 'activation3', 'nodes4', 'activation4',
'nodes5', 'activation5']
# write the csv header
if 'filename' not in globals():
# create directory
current_directory = os.getcwd()
final_directory = os.path.join(current_directory, 'search_results')
if not os.path.exists(final_directory):
os.makedirs(final_directory)
global filename
filename = 'search_results/mlp' + str(datetime.datetime.now()).replace(' ', '_').replace(':', '.') + '.csv'
with open(filename, 'a+') as f:
line = ','.join(col_names)
f.write(line + '\n')
# write results to csv
with open(filename, 'a+') as f:
for name in col_names:
if name == 'val_mean_absolute_error':
line = val_mean_absolute_error
elif name in space.keys():
line = space[name]
elif name in space['num_layers'].keys():
line = space['num_layers'][name]
else:
line = ''
f.write(str(line) + ',')
f.write('\n')
return {'loss': val_mean_absolute_error, 'status': STATUS_OK}
def cnn_create_model(space):
common_args = {'activation':'relu', 'padding':'same'}
input = Input(x_train[0].shape)
if space['num_layers']['layers'] == 'one':
x = Conv2D(space['num_layers']['n_convs1'], space['num_layers']['kernal_sz1'], **common_args)(input)
x = MaxPool2D()(x)
if space['batch_norm']:
x = BatchNormalization()(x)
if space['num_layers']['layers'] == 'two':
x = Conv2D(space['num_layers']['n_convs1'], space['num_layers']['kernal_sz1'], **common_args)(input)
x = MaxPool2D()(x)
if space['batch_norm']:
x = BatchNormalization()(x)
x = Conv2D(space['num_layers']['n_convs2'], space['num_layers']['kernal_sz2'], **common_args)(x)
x = MaxPool2D()(x)
if space['batch_norm']:
x = BatchNormalization()(x)
if space['num_layers']['layers'] == 'three':
x = Conv2D(space['num_layers']['n_convs1'], space['num_layers']['kernal_sz1'], **common_args)(input)
x = MaxPool2D()(x)
if space['batch_norm']:
x = BatchNormalization()(x)
x = Conv2D(space['num_layers']['n_convs2'], space['num_layers']['kernal_sz2'], **common_args)(x)
x = MaxPool2D()(x)
if space['batch_norm']:
x = BatchNormalization()(x)
x = Conv2D(space['num_layers']['n_convs3'], space['num_layers']['kernal_sz3'], **common_args)(x)
x = MaxPool2D()(x)
if space['batch_norm']:
x = BatchNormalization()(x)
if space['num_layers']['layers'] == 'four':
x = Conv2D(space['num_layers']['n_convs1'], space['num_layers']['kernal_sz1'], **common_args)(input)
x = MaxPool2D()(x)
if space['batch_norm']:
x = BatchNormalization()(x)
x = Conv2D(space['num_layers']['n_convs2'], space['num_layers']['kernal_sz2'], **common_args)(x)
x = MaxPool2D()(x)
if space['batch_norm']:
x = BatchNormalization()(x)
x = Conv2D(space['num_layers']['n_convs3'], space['num_layers']['kernal_sz3'], **common_args)(x)
x = MaxPool2D()(x)
if space['batch_norm']:
x = BatchNormalization()(x)
x = Conv2D(space['num_layers']['n_convs4'], space['num_layers']['kernal_sz4'], **common_args)(x)
x = MaxPool2D()(x)
if space['batch_norm']:
x = BatchNormalization()(x)
x = Flatten()(x)
x = Dense(512, activation='relu')(x)
x = Dense(1, activation='linear')(x)
# x = Lambda(lambda z: z * 10 * np.std(y_train))(x)
model = Model(inputs=input, outputs=x)
model.compile(optimizer=Adam(lr=space['learning_rate']), loss='mean_squared_error', metrics=['mae'])
dataflow = ImageDataGenerator(horizontal_flip=True, vertical_flip=True).flow(x_train, y_train)
model.fit_generator(dataflow,
validation_data=(x_val, y_val),
steps_per_epoch=(len(y_train) // 32) + 1,
**fit_kwargs)
val_mean_absolute_error = model.evaluate(x_val, y_val)[1]
space['val_mean_absolute_error'] = val_mean_absolute_error
print(f'\n{space}')
print('Best val mean absolute error of epoch:', val_mean_absolute_error)
# colnames for csv
col_names = ['val_mean_absolute_error', 'learning_rate', 'batch_norm',
'n_convs1', 'n_convs2', 'n_convs3', 'n_convs4',
'kernal_sz1', 'kernal_sz2', 'kernal_sz3', 'kernal_sz4']
# write the csv header
if 'filename' not in globals():
# create directory
current_directory = os.getcwd()
final_directory = os.path.join(current_directory, r'search_results')
if not os.path.exists(final_directory):
os.makedirs(final_directory)
global filename
filename = 'search_results/cnn' + str(datetime.datetime.now()).replace(' ', '_').replace(':', '.') + '.csv'
with open(filename, 'a+') as f:
line = ','.join(col_names)
f.write(line + '\n')
# write results to csv
with open(filename, 'a+') as f:
for name in col_names:
if name == 'val_mean_absolute_error':
line = val_mean_absolute_error
elif name in space.keys():
line = space[name]
elif name in space['num_layers'].keys():
if type(space['num_layers'][name]) == tuple:
line = space['num_layers'][name][0]
else:
line = space['num_layers'][name]
else:
line = ''
f.write(str(line) + ',')
f.write('\n')
return {'loss': val_mean_absolute_error, 'status': STATUS_OK}
def cnn_augmented_create_model(space):
callbacks = [EarlyStopping(monitor='val_loss', min_delta=0.05, patience=15, restore_best_weights=True)]
fit_kwargs = {'epochs': 3000,
'verbose': 0,
'callbacks': callbacks}
image_input = Input(shape=x_train[0][0].shape)
x = Conv2D(space['n_nodes_layer1'], (4,4), strides=2, kernel_initializer='glorot_uniform', padding='same', activation=space['layer1_activation'])(image_input)
x = BatchNormalization()(x)
x = Conv2D(space['n_nodes_layer2'], (3,3), strides=2, kernel_initializer='glorot_uniform', padding='same', activation=space['layer2_activation'])(x)
x = BatchNormalization()(x)
x = Conv2D(space['n_nodes_layer3'], (3,3), strides=2, kernel_initializer='glorot_uniform', padding='same', activation=space['layer3_activation'])(x)
x = BatchNormalization()(x)
x = Conv2D(space['n_nodes_layer4'], (3,3), strides=2, kernel_initializer='glorot_uniform', padding='same', activation=space['layer4_activation'])(x)
x = BatchNormalization()(x)
x = Conv2D(space['n_nodes_layer5'], (1,1), kernel_initializer='glorot_uniform', padding='same', activation=space['layer5_activation'])(x)
x = BatchNormalization()(x)
x = Flatten()(x)
hand_input = Input(shape=x_train[1][0].shape)
h = Dense(space['n_nodes_layer6'], activation=space['layer6_activation'], kernel_initializer='glorot_uniform')(hand_input)
h = Dense(space['n_nodes_layer7'], activation=space['layer7_activation'], kernel_initializer='glorot_uniform')(h)
h = Dense(space['n_nodes_layer8'], activation=space['layer8_activation'], kernel_initializer='glorot_uniform')(h)
x = Concatenate()([x, h])
x = Dense(space['n_nodes_layer9'], activation=space['layer9_activation'], kernel_initializer='glorot_uniform')(x)
x = Dense(space['n_nodes_layer10'], activation=space['layer10_activation'], kernel_initializer='glorot_uniform')(x)
x = Dense(1, activation='linear')(x)
x = Lambda(lambda z: z*10*np.std(y_train))(x)
model = Model(inputs=[image_input,hand_input], outputs=x)
model.compile(optimizer=Adam(lr=space['learning_rate']), loss='mean_squared_error', metrics=['mae'])
result = model.fit(x_train, y_train, batch_size=space['batch_size'],
validation_data=(x_val, y_val),
**fit_kwargs)
# get the lowest val_mean_absolute_error of the training epochs
val_mean_absolute_error = np.amin(result.history['val_mean_absolute_error'])
space['val_mean_absolute_error'] = val_mean_absolute_error
print(f'\n{space}')
print('Best val mean absolute error of epoch:', val_mean_absolute_error)
# colnames for csv
colNames = ['val_mean_absolute_error', 'learning_rate', 'batch_size', 'n_nodes_layer1', 'layer1_activation',
'n_nodes_layer2', 'layer2_activation', 'n_nodes_layer3', 'layer3_activation',
'n_nodes_layer4', 'layer4_activation', 'n_nodes_layer5', 'layer5_activation',
'n_nodes_layer6', 'layer6_activation', 'n_nodes_layer7', 'layer7_activation',
'n_nodes_layer8', 'layer8_activation', 'n_nodes_layer9', 'layer9_activation',
'n_nodes_layer10', 'layer10_activation']
# write the csv header
if 'filename' not in globals():
# create directory
current_directory = os.getcwd()
final_directory = os.path.join(current_directory, r'search_results')
if not os.path.exists(final_directory):
os.makedirs(final_directory)
global filename
filename = 'search_results/cnn_augmented' + str(datetime.datetime.now()).replace(' ', '_').replace(':', '.') + '.csv'
with open(filename, 'a+') as f:
line = ','.join(colNames)
f.write(line + '\n')
# write results to csv
with open(filename, 'a+') as f:
for name in colNames:
if name == 'val_mean_absolute_error':
line = val_mean_absolute_error
elif name in space.keys():
line = space[name]
elif name in space['num_layers'].keys():
line = space['num_layers'][name]
else:
line = ''
f.write(str(line) + ',')
f.write('\n')
return {'loss': val_mean_absolute_error, 'status': STATUS_OK, 'model': model}
def fused_model(space):
np.random.seed(space['np_seed'])
tf.set_random_seed(space['tf_seed'])
# make model
input_ = Input(shape=x_train[0].shape)
x = Dense(space['n_nodes_layer1'], activation=space['layer1_activation'])(input_)
if space['num_layers']['layers'] == 'two':
x = Dense(space['num_layers']['nodes2'], activation=space['num_layers']['activation2'], kernel_regularizer=regularizers.l2(space['l2_1']))(x)
x = Dense(1, activation='linear', kernel_regularizer=regularizers.l2(space['l2_2']))(x)
model = Model(inputs=input_, outputs=x)
model.compile(optimizer=Adam(lr=space['learning_rate']), loss=space['loss'], metrics=['mae'])
model.fit(x_train, y_train, validation_data=(x_val, y_val), batch_size=space['batch_size'], **fit_kwargs)
val_mean_absolute_error = model.evaluate(x_val, y_val)[1]
test_mean_absolute_error = model.evaluate(x_test, y_test)[1]
space['val_mean_absolute_error'] = val_mean_absolute_error
space['test_mean_absolute_error'] = test_mean_absolute_error
print(f'\n{space}')
print('Best val mean absolute error of epoch:', val_mean_absolute_error)
# colnames for csv
col_names = ['val_mean_absolute_error', 'test_mean_absolute_error', 'learning_rate', 'batch_size', 'layers', 'n_nodes_layer1',
'layer1_activation', 'nodes2', 'activation2', 'nodes3', 'activation3', 'nodes4', 'activation4',
'nodes5', 'activation5','loss', 'l2_1', 'l2_2', 'np_seed','tf_seed']
# write the csv header
if 'filename' not in globals():
# create directory
current_directory = os.getcwd()
final_directory = os.path.join(current_directory, 'search_results')
if not os.path.exists(final_directory):
os.makedirs(final_directory)
global filename
filename = 'search_results/fused' + str(datetime.datetime.now()).replace(' ', '_').replace(':', '.') + '.csv'
with open(filename, 'a+') as f:
line = ','.join(col_names)
f.write(line + '\n')
# write results to csv
with open(filename, 'a+') as f:
for name in col_names:
if name in space.keys():
line = space[name]
elif name in space['num_layers'].keys():
line = space['num_layers'][name]
else:
line = ''
f.write(str(line) + ',')
f.write('\n')
return {'loss': test_mean_absolute_error, 'status': STATUS_OK} #val_mean_absolute_error
if __name__ == '__main__':
'''
example: python hyperopt_search.py fused 2>&1 | tee search.log
'''
# input
architecture = sys.argv[1]
#os.environ['CUDA_VISIBLE_DEVICES'] = sys.argv[2]
import tensorflow as tf
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.8
# config.gpu_options.allow_growth = True
from keras.backend.tensorflow_backend import set_session
tf.set_random_seed(11)
set_session(tf.Session(config=config))
# number of different evaluation attempts tried
max_evals = 500
if architecture == 'mlp':
x_train, x_val, y_train, y_val, _ = utils.load_hand_data_cv()
space = space_declarations.mlp_space
trials = Trials()
best = fmin(mlp_create_model, space, algo=tpe.suggest, max_evals=max_evals, trials=trials)
elif architecture == 'cnn':
x_train, x_val, y_train, y_val, _ = utils.load_image_data_cv()
space = space_declarations.cnn_space
trials = Trials()
best = fmin(cnn_create_model, space, algo=tpe.suggest, max_evals=max_evals, trials=trials)
elif architecture == 'cnn_augmented':
x_train, x_test, y_train, y_test, all_train_ids = utils.load_data(get_images=True, get_hand=True, scale=True)
space = space_declarations.cnn_augmented_space
trials = Trials()
best = fmin(cnn_augmented_create_model, space, algo=tpe.suggest, max_evals=max_evals, trials=trials)
elif architecture == 'fused':
x_train_all, x_test, y_train_all, y_test, all_train_ids = utils.load_augmented_features()
unique_train_ids = np.unique(all_train_ids)
train_cv_ids, val_ids = train_test_split(unique_train_ids,test_size=0.08)
train_idxs = np.isin(all_train_ids, train_cv_ids)
val_idxs = np.isin(all_train_ids, val_ids)
print(('training size: ', train_cv_ids.shape))
print(('validating size: ', val_ids.shape))
x_train = x_train_all[train_idxs]
y_train = y_train_all[train_idxs]
x_val = x_train_all[val_idxs]
y_val = y_train_all[val_idxs]
space = space_declarations.fused_space
trials = Trials()
best = fmin(fused_model, space, algo=tpe.suggest, max_evals=max_evals, trials=trials)
else:
raise Exception(f'Invalid architecture name: {architecture}')
print(best)