-
Notifications
You must be signed in to change notification settings - Fork 156
/
utils.py
47 lines (42 loc) · 1.34 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import numpy as np
from PIL import Image
def data_augmentation(image, mode):
if mode == 0:
# original
return image
elif mode == 1:
# flip up and down
return np.flipud(image)
elif mode == 2:
# rotate counterwise 90 degree
return np.rot90(image)
elif mode == 3:
# rotate 90 degree and flip up and down
image = np.rot90(image)
return np.flipud(image)
elif mode == 4:
# rotate 180 degree
return np.rot90(image, k=2)
elif mode == 5:
# rotate 180 degree and flip
image = np.rot90(image, k=2)
return np.flipud(image)
elif mode == 6:
# rotate 270 degree
return np.rot90(image, k=3)
elif mode == 7:
# rotate 270 degree and flip
image = np.rot90(image, k=3)
return np.flipud(image)
def load_images(file):
im = Image.open(file)
return np.array(im, dtype="float32") / 255.0
def save_images(filepath, result_1, result_2 = None):
result_1 = np.squeeze(result_1)
result_2 = np.squeeze(result_2)
if not result_2.any():
cat_image = result_1
else:
cat_image = np.concatenate([result_1, result_2], axis = 1)
im = Image.fromarray(np.clip(cat_image * 255.0, 0, 255.0).astype('uint8'))
im.save(filepath, 'png')