-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpipeline.py
244 lines (178 loc) · 9.89 KB
/
pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import subprocess
import os
import sacrebleu
import argparse
from datetime import datetime
from util.util import make_run_folder
from util.tokenization import tokenization, detokenization
from util.segmentation import bpe, post_process_bpe, unigram, prpe, prpe_multi
from util.nmt import create_train_yaml, create_vocab_yaml
from util.transforms import append_noisy, postprocess_multilingual
NOW = datetime.now()
parser = argparse.ArgumentParser(description='Specify pipeline flags')
parser.add_argument('--src_segment_type', type=str, default=None, help='prpe_bpe, or none, or prpe, or bpe, or prpe_multi_N or unigram')
parser.add_argument('--tgt_segment_type', type=str, default=None, help='prpe_bpe, or none, or prpe, or bpe, or prpe_multi_N or unigram')
parser.add_argument('--model_type', type=str, default='rnn', help='rnn or transformer')
parser.add_argument('--in_lang', type=str, default='qz', help='qz or id or ga')
parser.add_argument('--out_lang', type=str, default='es', help='es or en')
parser.add_argument('--domain', type=str, default='religious', help='dataset folder name')
parser.add_argument('--save_steps', type=int, default=10000, help='saves every x steps')
parser.add_argument('--validate_steps', type=int, default=2000, help='opnenmt validates model every x steps')
parser.add_argument('--train_steps', type=int, default=100000, help='trains model for x steps')
parser.add_argument('--batch_size', type=int, default=64, help='batch size')
parser.add_argument('--src_tokenization', type=str, default='moses', help='moses, none, custom')
parser.add_argument('--tgt_tokenization', type=str, default='moses', help='moses, none, custom')
parser.add_argument('--filter_too_long', type=int, default=-1, help='max token length, -1 for no filtering')
parser.add_argument('--load_saved', type=str, default=None, help='load from saved model')
parser.add_argument('--vocab_folder', type=str, default=None, help='corpora to build vocab from')
parser.add_argument('--src_token_lang', type=str, default=None, help='tokenizer language')
parser.add_argument('--tgt_token_lang', type=str, default=None, help='tokenizer language')
parser.add_argument('--noisy_data', type=bool, default=None, help= 'include noisy data')
parser.add_argument('--multilingual', type=bool, default=None, help= 'data is multilingual')
opt = parser.parse_args()
in_lang = opt.in_lang
out_lang = opt.out_lang
domain = opt.domain
# this naming convention doesnt work on windows
FOLDER = f'-{domain}-{opt.model_type}-{opt.src_segment_type}-{in_lang}-{opt.tgt_segment_type}-{out_lang}-{NOW.strftime("%m_%d_%Y_%H_%M_%S")}'
SRC_INPUT = f'data/{domain}/train.{in_lang}.txt'
TGT_INPUT = f'data/{domain}/train.{out_lang}.txt'
SRC_PROCESSED = f'model_opennmt/run' + FOLDER +f'/processed_train.{in_lang}.txt'
TGT_PROCESSED = f'model_opennmt/run' + FOLDER + f'/processed_train.{out_lang}.txt'
SRC_VLD_PROCESSED = f'model_opennmt/run' + FOLDER +f'/processed_validate.{in_lang}.txt'
TGT_VLD_PROCESSED = f'model_opennmt/run' + FOLDER + f'/processed_validate.{out_lang}.txt'
SRC_TEST_PROCESSED = f'model_opennmt/run' + FOLDER +f'/processed_test.{in_lang}.txt'
TGT_TEST_PROCESSED = f'model_opennmt/run' + FOLDER + f'/processed_test.{out_lang}.txt'
SRC_TEST = f'data/{domain}/test.{in_lang}.txt'
TGT_TEST = f'data/{domain}/test.{out_lang}.txt'
SRC_VLD = f'data/{domain}/validate.{in_lang}.txt'
TGT_VLD = f'data/{domain}/validate.{out_lang}.txt'
OUTPUT = f'model_opennmt/run' + FOLDER + f'/output.{out_lang}.txt'
DETOKEN_OUTPUT = f'model_opennmt/run' + FOLDER + f'/detoken_output.{out_lang}.txt'
DETOKEN_TGT = f'model_opennmt/run' + FOLDER + f'/detoken.{out_lang}.txt'
PIPELINE = 'model_opennmt/run' + FOLDER + '/pipeline.yaml'
MODEL = f'model_opennmt/run' + FOLDER + f'/subword_model.{in_lang}.txt'
if opt.vocab_folder is not None:
SRC_TRAIN_VOCAB = f'data/{opt.vocab_folder}/train.{in_lang}.txt'
TGT_TRAIN_VOCAB = f'data/{opt.vocab_folder}/train.{out_lang}.txt'
SRC_VLD_VOCAB = f'data/{opt.vocab_folder}/validate.{in_lang}.txt'
TGT_VLD_VOCAB = f'data/{opt.vocab_folder}/validate.{out_lang}.txt'
VOCAB_CFG = 'model_opennmt/run' + FOLDER + '/vocab.yaml'
def tokenization_process():
src_token = in_lang if opt.src_token_lang is None else opt.src_token_lang
tgt_token = out_lang if opt.tgt_token_lang is None else opt.tgt_token_lang
tokenization(TGT_INPUT, TGT_PROCESSED, tgt_token, opt.tgt_tokenization)
tokenization(TGT_VLD, TGT_VLD_PROCESSED, tgt_token, opt.tgt_tokenization)
tokenization(TGT_TEST, TGT_TEST_PROCESSED, tgt_token, opt.tgt_tokenization)
tokenization(SRC_INPUT, SRC_PROCESSED, src_token, opt.src_tokenization)
tokenization(SRC_VLD, SRC_VLD_PROCESSED, src_token, opt.src_tokenization)
tokenization(SRC_TEST, SRC_TEST_PROCESSED, src_token, opt.src_tokenization)
def detokenization_process():
tgt_token = out_lang if opt.tgt_token_lang is None else opt.tgt_token_lang
if opt.multilingual is not None:
postprocess_multilingual(OUTPUT)
detokenization(OUTPUT, DETOKEN_OUTPUT, tgt_token)
detokenization(TGT_TEST_PROCESSED, DETOKEN_TGT, tgt_token)
def segment_process(segment_type, lang):
PROCESSED = f'model_opennmt/run' + FOLDER +f'/processed_train.{lang}.txt'
VLD_PROCESSED = f'model_opennmt/run' + FOLDER +f'/processed_validate.{lang}.txt'
TEST_PROCESSED = f'model_opennmt/run' + FOLDER +f'/processed_test.{lang}.txt'
BPE_IN = f'model_opennmt/run' + FOLDER + f'/bpe_in.{in_lang}.txt'
BPE_OUT = f'model_opennmt/run' + FOLDER + f'/bpe_out.{in_lang}.txt'
VLD_BPE_IN = f'model_opennmt/run' + FOLDER + f'/vld_bpe_in.{in_lang}.txt'
VLD_BPE_OUT = f'model_opennmt/run' + FOLDER + f'/vld_bpe_out.{in_lang}.txt'
TEST_BPE_IN = f'model_opennmt/run' + FOLDER + f'/test_bpe_in.{in_lang}.txt'
TEST_BPE_OUT = f'model_opennmt/run' + FOLDER + f'/test_bpe_out.{in_lang}.txt'
if segment_type is None:
return
if segment_type == 'prpe':
# Segment source train
prpe(PROCESSED, BPE_OUT, lang, FOLDER)
post_process_bpe(PROCESSED, BPE_OUT)
# Segment source validation
prpe(VLD_PROCESSED, VLD_BPE_OUT, lang, FOLDER , train=False, apply=True)
post_process_bpe(VLD_PROCESSED, VLD_BPE_OUT)
# Segment source test
prpe(TEST_PROCESSED, TEST_BPE_OUT, lang, FOLDER , train=False, apply=True)
post_process_bpe(TEST_PROCESSED,TEST_BPE_OUT)
if 'prpe_multi' in segment_type:
iters = int(segment_type[11:])
# Segment source train
prpe_multi(PROCESSED, BPE_OUT, iters, lang, FOLDER)
post_process_bpe(PROCESSED, BPE_OUT)
# Segment source validation
prpe_multi(VLD_PROCESSED, VLD_BPE_OUT, iters, lang, FOLDER, train=False, apply=True)
post_process_bpe(VLD_PROCESSED, VLD_BPE_OUT)
# Segment source test
prpe_multi(TEST_PROCESSED, TEST_BPE_OUT, iters, lang, FOLDER, train=False, apply=True)
post_process_bpe(TEST_PROCESSED, TEST_BPE_OUT)
if segment_type == 'prpe_bpe':
# Segment source train
prpe(PROCESSED, BPE_IN, lang, FOLDER)
bpe(BPE_IN, PROCESSED, lang, FOLDER)
# Segment source validation
prpe(VLD_PROCESSED, VLD_BPE_IN, lang, FOLDER, train=False, apply=True)
bpe(VLD_BPE_IN, VLD_PROCESSED, lang, FOLDER, train=False)
# Segment source test
prpe(TEST_PROCESSED, TEST_BPE_IN, lang, FOLDER, train=False, apply=True)
bpe(TEST_BPE_IN, TEST_PROCESSED, lang, FOLDER, train=False)
if segment_type == 'bpe':
# Segment source train
bpe(PROCESSED, PROCESSED, lang, FOLDER)
# Segment source validation
bpe(VLD_PROCESSED, VLD_PROCESSED, lang, FOLDER, train=False)
# Segment source test
bpe(TEST_PROCESSED, TEST_PROCESSED, lang, FOLDER, train=False)
if segment_type == 'unigram':
unigram(PROCESSED, PROCESSED, MODEL)
unigram(VLD_PROCESSED, VLD_PROCESSED, MODEL , train=False)
unigram(TEST_PROCESSED, TEST_PROCESSED, MODEL , train=False)
def metrics():
with open(DETOKEN_OUTPUT, encoding='utf8') as output, open(DETOKEN_TGT, encoding='utf8') as reference:
output_arr = output.readlines()
ref_arr = [reference.readlines()]
bleu = sacrebleu.corpus_bleu(output_arr, ref_arr).score
chrf = sacrebleu.corpus_chrf(output_arr, ref_arr).score
print(f'BLEU SCORE: {bleu}')
print(f'CHRF SCORE: {chrf}')
return bleu, chrf
def train():
# Build vocabulary
if opt.vocab_folder is not None:
build = ['onmt_build_vocab', '-config', VOCAB_CFG]
else:
build = ['onmt_build_vocab', '-config', PIPELINE]
subprocess.run(build)
# Train model
train = ['onmt_train', '-config', PIPELINE]
subprocess.run(train)
def test():
bleu_scores = dict()
chrf_scores = dict()
i = opt.train_steps
model_name = f'/model_step_{i}.pt'
translate = ['onmt_translate', '-model', 'model_opennmt/run' + FOLDER + model_name, '-src', SRC_TEST_PROCESSED, '-output', OUTPUT, '--replace_unk']
print(f'Translating {opt.domain} {opt.model_type} + {opt.src_segment_type}: {in_lang}-> {opt.tgt_segment_type}: {out_lang} at step {i}', flush=True)
subprocess.run(translate)
detokenization_process()
bleu_scores[i], chrf_scores[i] = metrics()
def pipeline():
# Make run folder
make_run_folder(FOLDER)
# Generate yaml
create_train_yaml(opt, SRC_PROCESSED, TGT_PROCESSED, SRC_VLD_PROCESSED, TGT_VLD_PROCESSED, FOLDER, PIPELINE)
if opt.vocab_folder is not None:
create_vocab_yaml(opt, SRC_TRAIN_VOCAB, TGT_TRAIN_VOCAB, SRC_VLD_VOCAB, TGT_VLD_VOCAB, FOLDER, VOCAB_CFG)
# Tokenization pre-processing
tokenization_process()
# Segment texts
segment_process(opt.src_segment_type, in_lang)
segment_process(opt.tgt_segment_type, out_lang)
if opt.noisy_data is not None:
append_noisy(domain, opt.noisy_data, in_lang, out_lang, SRC_PROCESSED, TGT_PROCESSED)
# Training
train()
# Testing
test()
if __name__ == '__main__':
pipeline()