diff --git a/README.md b/README.md index d4f4ccf..5bc3b07 100644 --- a/README.md +++ b/README.md @@ -1,9 +1,25 @@ -# Semantic-Aware Scene Recognition +

+Semantic-Aware Scene Recognition +

+ +

+ + GitHub version + + + GitHub license + + GitHub stars +

+ Official Pytorch Implementation of [Semantic-Aware Scene Recognition](https://arxiv.org/abs/1909.02410) by Alejandro López-Cifuentes, Marcos Escudero-Viñolo, Jesús Bescós and Álvaro García-Martín. This paper is currently under Peer Review Revision in Elsevier Pattern Recognition Journal. -![Example Focus](Docs/ExampleFocus.png) +

+ ExampleFocus +

+ ## Summary This paper propose to improve scene recognition by using object information to focalize learning during the training process. The main contributions of the paper are threefold: @@ -13,7 +29,9 @@ This paper propose to improve scene recognition by using object information to f - We validate the effectiveness of the proposed method through experimental results on public scene recognition datasets such as ADE20K, MIT Indoor 67, SUN 397 and Places365 obtaining state-of-the-art results. The propose CNN architecture is as follows: -![Network Architecture](Docs/NetworkArchitecture.png) +

+ NetworkArchitecture +

## Results ### ADE20K Dataset @@ -23,6 +41,7 @@ The propose CNN architecture is as follows: | | ✓ | 50.60 | 60.45| 72.10 | 12.17 | | **✓** | **✓** | **62.55** | **73.25** | **82.75** | **27.00** | + ### MIT Indoor 67 Dataset | Method | Backbone| Number of Parameters | Top@1 | |--|:--:|:--:|:--:| @@ -153,11 +172,15 @@ If you find this work useful, please consider citing: ``` @article{lopez2019semantic, title={Semantic-Aware Scene Recognition}, - author={L{\'o}pez-Cifuentes, Alejandro and Escudero-Vi{\~n}olo, Marcos and Besc{\'o}s, Jes{\'u}s and Garc{\'\i}a, {\'A}lvaro}, + author={L{\'o}pez-Cifuentes, Alejandro and Escudero-Vi{\~n}olo, Marcos and + Besc{\'o}s, Jes{\'u}s and Garc{\'\i}a, {\'A}lvaro}, journal={arXiv preprint arXiv:1909.02410}, year={2019} } ``` ## Acknowledgment This study has been partially supported by the Spanish Government through its TEC2017-88169-R MobiNetVideo project. -![Logo Ministerio](Docs/LogoMinisterio.png) + +

+ LogoMinisterio +