-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathproject.cpp
365 lines (332 loc) · 8.15 KB
/
project.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
#include<bits/stdc++.h>
using namespace std;
class csv_read{
protected:
vector <pair<string,vector<float> > >data;
vector <float>x,y,yp,y_gra,x_test,y_test;
string file_name;
float x_factor,y_factor;
int n;
public:
void read(string file)
{
file_name = file;
cout<<"read csv file: "<<file_name<<endl;
fstream fo;
fo.open(file_name.c_str(), ios::in);
string line,colname;
if(fo.good()){
getline(fo,line);
stringstream s(line);
while(getline(s,colname,',')){
// cout<<colname<<endl;
data.push_back({colname,vector<float> {}});
}
int temp1;
while(getline(fo,line)){
int col=0;
stringstream s1(line);
while(s1 >> temp1){
// cout<<"value "<<x<<endl;
data.at(col).second.push_back(temp1);
col++;
// cout<<s1.peek()<<endl;
if(s1.peek() == ','){
s1.ignore();
}
}
}
for(int i=0;i<data[0].second.size();i++){
x.push_back(data[0].second.at(i));
}
for(int i=0;i<data[1].second.size();i++){
y.push_back(data[1].second.at(i));
}
}
else{
cout<<"error in file";
}
fo.close();
check();
data_normalization();
spilt_data();
}
void check(){
int i=0;
while(i<data[0].second.size()){
if(x.at(i)!=data[0].second.at(i)){
cout<<"error in x"<<endl;
break;
}
i++;
}
i=0;
while(i<data[1].second.size()){
if(y.at(i)!=data[1].second.at(i)){
cout<<"error in y"<<endl;
break;
}
i++;
}
}
void set_size()
{
n=x.size();
}
void printdata()
{
for(int i=0;i<n;i++)
{
cout<<x[i]<<" "<<y[i]<<endl;
}
}
void data_normalization(int normal_level = 7, int type =0)
{
long double x_sum=0, y_sum=0;
for(int i=0; i<x.size();i++)
{
x_sum += x[i];
y_sum += y[i];
}
x_factor = x_sum / (normal_level*x.size());
y_factor = y_sum / (normal_level*y.size());
// cout<<"x-factor "<<x_factor<<endl<<" y-factor"<<y_factor<<endl;
for(int i=0; i<x.size();i++)
{
x[i] = x[i] / x_factor;
y[i] = y[i] / y_factor;
}
}
void spilt_data(int debug=0)
{
int total = 0.3 * x.size();
srand(time(0));
if(debug)
{
cout<<"index values"<<endl;
}
for (int i=0; i<total; i++)
{
int x_mod = x.size();
int y_mod = y.size();
int temp = rand();
int x_index = temp%x_mod;
int y_index = temp%y_mod;
if(debug)
{
cout<<x_index<<endl;
}
x_test.push_back(x[x_index]);
y_test.push_back(y[y_index]);
x.erase(x.begin() + x_index);
y.erase(y.begin() + y_index);
}
if(debug)
{
cout<<"X_test"<<endl;
}
if(debug)
{
for (int i=0; i < x_test.size(); i++)
{
cout<<x_test[i]<<endl;
}
}
cout<<endl;
}
};
class LinearRegression:public csv_read
{
protected:
float m,c,xbar,ybar;
float slope,intercept;
public:
LinearRegression()
{
m=0;
c=0;
xbar=0;
ybar=0;
}
void calculate()
{
float z,q,s=0,d=0;
float siz=y.size();
xbar=accumulate(x.begin(),x.end(),0)/siz;
ybar=accumulate(y.begin(),y.end(),0)/siz;
for(int i=0;i<n;i++)
{
z=(x[i]-xbar);
q=(y[i]-ybar);
s=s+(z*q);
d=d+z*z;
}
m=(s/d);
c=ybar-m*xbar;
}
void show()
{
cout<<"Slope of the line by closed form eqn: "<<m<<endl;
cout<<"Intercept of the line by closed form eqn: "<<c<<endl;
}
void predicted()
{
int i;
for(i=0;i<y_test.size();i++)
{
float z;
z=m*x_test[i]+c;
yp.push_back(z);
//cout<<z*x_factor<<"real :"<<y_test[i]*y_factor<<endl;
}
}
void gradient_descent()
{
vector<float>error; // array to store all error values
float err = 0;
float b0 = 0; //initializing b0
float b1 = 0; //initializing b1
float alpha = 0.00019; //intializing error rate
int max_learning_loops = 4700;
for (int j=0; j < max_learning_loops; j++)
{
for (int i = 0; i < n; i ++)
{
float p = b0 + b1 * x[i];
err += (p - y[i])* (p - y[i]);
}
error.push_back(err);
b0 = b0 - (alpha * err);
float err1 = 0;
for (int i = 0; i < n; i ++)
{
float p = b0 + b1 * x[i];
err1 += (p - y[i])* (p - y[i]);
}
b0 = b0 + (2 * alpha * err);
float err2 = 0;
for (int i = 0; i < n; i ++)
{
float p = b0 + b1 * x[i];
err2 += (p - y[i])* (p - y[i]);
}
if(err1<err2)
{
b0 = b0 - (2 * alpha * err);
}
b1 = b1 - (alpha * err);
err1 = 0;
for (int i = 0; i < n; i ++)
{
float p = b0 + b1 * x[i];
err1 += (p - y[i])* (p - y[i]);
}
b1 = b1 + (2*alpha * err);
err2 = 0;
for (int i = 0; i < n; i ++)
{
float p = b0 + b1 * x[i];
err2 += (p - y[i])* (p - y[i]);
}
if(err1 < err2)
{
b1 = b1 - (2 * alpha * err);
}
err=0;
// cout<<"B0-value: "<<b0<<" "<<"B1-value: "<<b1<<endl;
}
//sort(error.begin(),error.end(),custom_sort);//sorting based on error values
cout<<"Final Values by geadient descent are: "<<"c= "<<b0<<" "<<"m= "<<b1<<" "<<endl;
slope=b1;
intercept=b0;
}
void predict_gradient()
{
for(int i=0;i<x_test.size();i++)
{
y_gra.push_back((x_test[i] * slope) + intercept);
}
}
};
class Accuracy:public LinearRegression
{
protected:
float r2f,r2g,r;
public:
Accuracy()
{
r2f=0;
r=0;
r2g=0;
}
void correlation()
{
float z,q,s=0,d=0,siz=n,b=0,sq;
for(int i=0;i<y.size();i++)
{
z=(x[i]-xbar);
q=(y[i]-ybar);
s=s+(z*q);
d=d+z*z;
b+=(q*q);
}
sq=sqrtf(d*b);
r=(s/sq);
cout<<"Correlation= "<<r<<endl;
if(r>-0.5 && r<-1.0)
{
cout<<"Strong Negative relationship."<<endl;
cout<<"Slope is negative."<<endl;
}
else if(r>=-0.5 && r<=0.5)
{
cout<<"No strong relationship between data."<<endl;
cout<<"Data is not good for linear regression."<<endl;
}
else if(r>0.5 && r<=1.0)
{
cout<<"Strong Positive relationship."<<endl;
cout<<"Slope is positive."<<endl;
}
cout<<endl;
}
void rsquare_for_formula()
{
float ytbar=accumulate(y_test.begin(),y_test.end(),0)/y_test.size();
float z=0,s=0;
for(int i=0;i<y_test.size();i++)
{
z+=((yp[i]-y_test[i])*(yp[i]-y_test[i]));
s+=((y[i]-ytbar)*(y[i]-ytbar));
}
r2f=1-(z/s);
cout<<"R squared for closed form :"<<r2f<<endl;
}
void rsquare_for_gradient()
{
float numg,deng=0;
float y_t_bar=accumulate(y_test.begin(),y_test.end(),0)/y_test.size();
for(int i=0; i<x_test.size(); i++)
{
float temp = (x_test[i] * slope) + intercept;
// cout<<"Predict: "<<temp*y_factor<<" Actual: "<<y_test[i]*y_factor<<endl;
numg += ((temp-y_test[i]) * (temp-y_test[i]));
deng+=((y_test[i]-y_t_bar)*(y_test[i]-y_t_bar));
}
cout<<"R2 for Gradient descent model: "<<1-(numg/deng)<<endl<<endl;
}
};
int main()
{
Accuracy a;
a.read("statistics.csv");
a.set_size();
a.gradient_descent();
a.predict_gradient();
a.rsquare_for_gradient();
a.correlation();
a.calculate();
a.show();
a.predicted();
a.rsquare_for_formula();
}