-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtree.go
1577 lines (1404 loc) · 42.9 KB
/
tree.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
Package arbo implements a Merkle Tree compatible with the circomlib
implementation of the MerkleTree, following the specification from
https://docs.iden3.io/publications/pdfs/Merkle-Tree.pdf and
https://eprint.iacr.org/2018/955.
Allows to define which hash function to use. So for example, when working with
zkSnarks the Poseidon hash function can be used, but when not, it can be used
the Blake2b hash function, which has much faster computation time.
*/
package arbo
import (
"bufio"
"bytes"
"encoding/binary"
"encoding/hex"
"fmt"
"io"
"math"
"runtime"
"sync"
"go.vocdoni.io/dvote/db"
)
const (
// PrefixValueLen defines the bytes-prefix length used for the Value
// bytes representation stored in the db
PrefixValueLen = 2
// PrefixValueEmpty is used for the first byte of a Value to indicate
// that is an Empty value
PrefixValueEmpty = 0
// PrefixValueLeaf is used for the first byte of a Value to indicate
// that is a Leaf value
PrefixValueLeaf = 1
// PrefixValueIntermediate is used for the first byte of a Value to
// indicate that is a Intermediate value
PrefixValueIntermediate = 2
// nChars is used to crop the Graphviz nodes labels
nChars = 4
// maxUint8 is the max size of key length
maxUint8 = int(^uint8(0)) // 2**8 -1
// maxUint16 is the max size of value length
maxUint16 = int(^uint16(0)) // 2**16 -1
)
var (
// DefaultThresholdNLeafs defines the threshold number of leafs in the
// tree that determines if AddBatch will work in memory or in disk. It
// is defined when calling NewTree, and if set to 0 it will work always
// in disk.
DefaultThresholdNLeafs = 65536
dbKeyRoot = []byte("root")
dbKeyNLeafs = []byte("nleafs")
emptyValue = []byte{0}
// ErrKeyNotFound is used when a key is not found in the db neither in
// the current db Batch.
ErrKeyNotFound = fmt.Errorf("key not found")
// ErrKeyAlreadyExists is used when trying to add a key as leaf to the
// tree that already exists.
ErrKeyAlreadyExists = fmt.Errorf("key already exists")
// ErrInvalidValuePrefix is used when going down into the tree, a value
// is read from the db and has an unrecognized prefix.
ErrInvalidValuePrefix = fmt.Errorf("invalid value prefix")
// ErrDBNoTx is used when trying to use Tree.dbPut but Tree.dbBatch==nil
ErrDBNoTx = fmt.Errorf("dbPut error: no db Batch")
// ErrMaxLevel indicates when going down into the tree, the max level is
// reached
ErrMaxLevel = fmt.Errorf("max level reached")
// ErrMaxVirtualLevel indicates when going down into the tree, the max
// virtual level is reached
ErrMaxVirtualLevel = fmt.Errorf("max virtual level reached")
// ErrSnapshotNotEditable indicates when the tree is a non writable
// snapshot, thus can not be modified
ErrSnapshotNotEditable = fmt.Errorf("snapshot tree can not be edited")
// ErrTreeNotEmpty indicates when the tree was expected to be empty and
// it is not
ErrTreeNotEmpty = fmt.Errorf("tree is not empty")
)
// Tree defines the struct that implements the MerkleTree functionalities
type Tree struct {
sync.Mutex
db db.Database
maxLevels int
// thresholdNLeafs defines the threshold number of leafs in the tree
// that determines if AddBatch will work in memory or in disk. It is
// defined when calling NewTree, and if set to 0 it will work always in
// disk.
thresholdNLeafs int
snapshotRoot []byte
hashFunction HashFunction
// TODO in the methods that use it, check if emptyHash param is len>0
// (check if it has been initialized)
emptyHash []byte
dbg *dbgStats
}
// Config defines the configuration for calling NewTree & NewTreeWithTx methods
type Config struct {
Database db.Database
MaxLevels int
ThresholdNLeafs int
HashFunction HashFunction
}
// NewTree returns a new Tree, if there is a Tree still in the given database, it
// will load it.
func NewTree(cfg Config) (*Tree, error) {
wTx := cfg.Database.WriteTx()
defer wTx.Discard()
t, err := NewTreeWithTx(wTx, cfg)
if err != nil {
return nil, err
}
if err = wTx.Commit(); err != nil {
return nil, err
}
return t, nil
}
// NewTreeWithTx returns a new Tree using the given db.WriteTx, which will not
// be ccommited inside this method, if there is a Tree still in the given
// database, it will load it.
func NewTreeWithTx(wTx db.WriteTx, cfg Config) (*Tree, error) {
// if thresholdNLeafs is set to 0, use the DefaultThresholdNLeafs
if cfg.ThresholdNLeafs == 0 {
cfg.ThresholdNLeafs = DefaultThresholdNLeafs
}
t := Tree{db: cfg.Database, maxLevels: cfg.MaxLevels,
thresholdNLeafs: cfg.ThresholdNLeafs, hashFunction: cfg.HashFunction}
t.emptyHash = make([]byte, t.hashFunction.Len()) // empty
_, err := wTx.Get(dbKeyRoot)
if err == db.ErrKeyNotFound {
// store new root 0 (empty)
if err = wTx.Set(dbKeyRoot, t.emptyHash); err != nil {
return nil, err
}
if err = t.setNLeafs(wTx, 0); err != nil {
return nil, err
}
return &t, nil
} else if err != nil {
return nil, err
}
return &t, nil
}
// Root returns the root of the Tree
func (t *Tree) Root() ([]byte, error) {
return t.RootWithTx(t.db)
}
// RootWithTx returns the root of the Tree using the given db.ReadTx
func (t *Tree) RootWithTx(rTx db.Reader) ([]byte, error) {
// if snapshotRoot is defined, means that the tree is a snapshot, and
// the root is not obtained from the db, but from the snapshotRoot
// parameter
if t.snapshotRoot != nil {
return t.snapshotRoot, nil
}
// get db root
return rTx.Get(dbKeyRoot)
}
func (t *Tree) setRoot(wTx db.WriteTx, root []byte) error {
return wTx.Set(dbKeyRoot, root)
}
// HashFunction returns Tree.hashFunction
func (t *Tree) HashFunction() HashFunction {
return t.hashFunction
}
// editable returns true if the tree is editable, and false when is not
// editable (because is a snapshot tree)
func (t *Tree) editable() bool {
return t.snapshotRoot == nil
}
// Invalid is used when a key-value can not be added trough AddBatch, and
// contains the index of the key-value and the error.
type Invalid struct {
Index int
Error error
}
// AddBatch adds a batch of key-values to the Tree. Returns an array containing
// the indexes of the keys failed to add. Supports empty values as input
// parameters, which is equivalent to 0 valued byte array.
func (t *Tree) AddBatch(keys, values [][]byte) ([]Invalid, error) {
wTx := t.db.WriteTx()
defer wTx.Discard()
invalids, err := t.AddBatchWithTx(wTx, keys, values)
if err != nil {
return invalids, err
}
return invalids, wTx.Commit()
}
// AddBatchWithTx does the same than the AddBatch method, but allowing to pass
// the db.WriteTx that is used. The db.WriteTx will not be committed inside
// this method.
func (t *Tree) AddBatchWithTx(wTx db.WriteTx, keys, values [][]byte) ([]Invalid, error) {
t.Lock()
defer t.Unlock()
if !t.editable() {
return nil, ErrSnapshotNotEditable
}
e := []byte{}
// equal the number of keys & values
if len(keys) > len(values) {
// add missing values
for i := len(values); i < len(keys); i++ {
values = append(values, e)
}
} else if len(keys) < len(values) {
// crop extra values
values = values[:len(keys)]
}
nLeafs, err := t.GetNLeafsWithTx(wTx)
if err != nil {
return nil, err
}
if nLeafs > t.thresholdNLeafs {
return t.addBatchInDisk(wTx, keys, values)
}
return t.addBatchInMemory(wTx, keys, values)
}
func (t *Tree) addBatchInDisk(wTx db.WriteTx, keys, values [][]byte) ([]Invalid, error) {
nCPU := flp2(runtime.NumCPU())
if nCPU == 1 || len(keys) < nCPU {
var invalids []Invalid
for i := 0; i < len(keys); i++ {
if err := t.addWithTx(wTx, keys[i], values[i]); err != nil {
invalids = append(invalids, Invalid{i, err})
}
}
return invalids, nil
}
kvs, invalids, err := keysValuesToKvs(t.maxLevels, keys, values)
if err != nil {
return nil, err
}
buckets := splitInBuckets(kvs, nCPU)
root, err := t.RootWithTx(wTx)
if err != nil {
return nil, err
}
l := int(math.Log2(float64(nCPU)))
subRoots, err := t.getSubRootsAtLevel(wTx, root, l+1)
if err != nil {
return nil, err
}
if len(subRoots) != nCPU {
// Already populated Tree but Unbalanced.
// add one key at each bucket, and then continue with the flow
for i := 0; i < len(buckets); i++ {
// add one leaf of the bucket, if there is an error when
// adding the k-v, try to add the next one of the bucket
// (until one is added)
inserted := -1
for j := 0; j < len(buckets[i]); j++ {
if newRoot, err := t.add(wTx, root, 0,
buckets[i][j].k, buckets[i][j].v); err == nil {
inserted = j
root = newRoot
break
}
}
// remove the inserted element from buckets[i]
if inserted != -1 {
buckets[i] = append(buckets[i][:inserted], buckets[i][inserted+1:]...)
}
}
subRoots, err = t.getSubRootsAtLevel(wTx, root, l+1)
if err != nil {
return nil, err
}
}
if len(subRoots) != nCPU {
return nil, fmt.Errorf("this error should not be reached."+
" len(subRoots) != nCPU, len(subRoots)=%d, nCPU=%d."+
" Please report it in a new issue:"+
" https://github.com/vocdoni/arbo/issues/new", len(subRoots), nCPU)
}
invalidsInBucket := make([][]Invalid, nCPU)
txs := make([]db.WriteTx, nCPU)
for i := 0; i < nCPU; i++ {
txs[i] = t.db.WriteTx()
err := txs[i].Apply(wTx)
if err != nil {
return nil, err
}
}
var wg sync.WaitGroup
wg.Add(nCPU)
for i := 0; i < nCPU; i++ {
go func(cpu int) {
// use different wTx for each cpu, after once all
// are done, iter over the cpuWTxs and copy their
// content into the main wTx
for j := 0; j < len(buckets[cpu]); j++ {
newSubRoot, err := t.add(txs[cpu], subRoots[cpu],
l, buckets[cpu][j].k, buckets[cpu][j].v)
if err != nil {
invalidsInBucket[cpu] = append(invalidsInBucket[cpu],
Invalid{buckets[cpu][j].pos, err})
continue
}
// if there has not been errors, set the new subRoots[cpu]
subRoots[cpu] = newSubRoot
}
wg.Done()
}(i)
}
wg.Wait()
for i := 0; i < nCPU; i++ {
if err := wTx.Apply(txs[i]); err != nil {
return nil, err
}
txs[i].Discard()
}
for i := 0; i < len(invalidsInBucket); i++ {
invalids = append(invalids, invalidsInBucket[i]...)
}
newRoot, err := t.upFromSubRoots(wTx, subRoots)
if err != nil {
return nil, err
}
// update dbKeyNLeafs
if err := t.SetRootWithTx(wTx, newRoot); err != nil {
return nil, err
}
// update nLeafs
if err := t.incNLeafs(wTx, len(keys)-len(invalids)); err != nil {
return nil, err
}
return invalids, nil
}
func (t *Tree) upFromSubRoots(wTx db.WriteTx, subRoots [][]byte) ([]byte, error) {
// is a method of Tree just to get access to t.hashFunction and
// t.emptyHash.
// go up from subRoots to up, storing nodes in the given WriteTx
// once up at the root, store it in the WriteTx using the dbKeyRoot
if len(subRoots) == 1 {
return subRoots[0], nil
}
// get the subRoots values to know the node types of each subRoot
nodeTypes := make([]byte, len(subRoots))
for i := 0; i < len(subRoots); i++ {
if bytes.Equal(subRoots[i], t.emptyHash) {
nodeTypes[i] = PrefixValueEmpty
continue
}
v, err := wTx.Get(subRoots[i])
if err != nil {
return nil, err
}
nodeTypes[i] = v[0]
}
var newSubRoots [][]byte
for i := 0; i < len(subRoots); i += 2 {
if (bytes.Equal(subRoots[i], t.emptyHash) && bytes.Equal(subRoots[i+1], t.emptyHash)) ||
(nodeTypes[i] == PrefixValueLeaf && bytes.Equal(subRoots[i+1], t.emptyHash)) {
// when both sub nodes are empty, the parent is also empty
// or
// when 1st sub node is a leaf but the 2nd is empty, the
// leaf is used as 'parent'
newSubRoots = append(newSubRoots, subRoots[i])
continue
}
if bytes.Equal(subRoots[i], t.emptyHash) && nodeTypes[i+1] == PrefixValueLeaf {
// when 2nd sub node is a leaf but the 1st is empty,
// the leaf is used as 'parent'
newSubRoots = append(newSubRoots, subRoots[i+1])
continue
}
k, v, err := t.newIntermediate(subRoots[i], subRoots[i+1])
if err != nil {
return nil, err
}
// store k-v to db
if err = wTx.Set(k, v); err != nil {
return nil, err
}
newSubRoots = append(newSubRoots, k)
}
return t.upFromSubRoots(wTx, newSubRoots)
}
func (t *Tree) getSubRootsAtLevel(rTx db.Reader, root []byte, l int) ([][]byte, error) {
// go at level l and return each node key, where each node key is the
// subRoot of the subTree that starts there
var subRoots [][]byte
err := t.iterWithStop(rTx, root, 0, func(currLvl int, k, v []byte) bool {
if currLvl == l && !bytes.Equal(k, t.emptyHash) {
subRoots = append(subRoots, k)
}
if currLvl >= l {
return true // to stop the iter from going down
}
return false
})
return subRoots, err
}
func (t *Tree) addBatchInMemory(wTx db.WriteTx, keys, values [][]byte) ([]Invalid, error) {
vt, err := t.loadVT()
if err != nil {
return nil, err
}
invalids, err := vt.addBatch(keys, values)
if err != nil {
return nil, err
}
// once the VirtualTree is build, compute the hashes
pairs, err := vt.computeHashes()
if err != nil {
// currently invalids in computeHashes are not counted,
// but should not be needed, as if there is an error there is
// nothing stored in the db and the error is returned
return nil, err
}
// store pairs in db
for i := 0; i < len(pairs); i++ {
if err := wTx.Set(pairs[i][0], pairs[i][1]); err != nil {
return nil, err
}
}
// store root (from the vt) to db
if vt.root != nil {
if err := wTx.Set(dbKeyRoot, vt.root.h); err != nil {
return nil, err
}
}
// update nLeafs
if err := t.incNLeafs(wTx, len(keys)-len(invalids)); err != nil {
return nil, err
}
return invalids, nil
}
// loadVT loads a new virtual tree (vt) from the current Tree, which contains
// the same leafs.
func (t *Tree) loadVT() (vt, error) {
vt := newVT(t.maxLevels, t.hashFunction)
vt.params.dbg = t.dbg
var callbackErr error
err := t.IterateWithStopWithTx(t.db, nil, func(_ int, k, v []byte) bool {
if v[0] != PrefixValueLeaf {
return false
}
leafK, leafV := ReadLeafValue(v)
if err := vt.add(0, leafK, leafV); err != nil {
callbackErr = err
return true
}
return false
})
if callbackErr != nil {
return vt, callbackErr
}
return vt, err
}
// Add inserts the key-value into the Tree. If the inputs come from a
// *big.Int, is expected that are represented by a Little-Endian byte array
// (for circom compatibility).
func (t *Tree) Add(k, v []byte) error {
wTx := t.db.WriteTx()
defer wTx.Discard()
if err := t.AddWithTx(wTx, k, v); err != nil {
return err
}
return wTx.Commit()
}
// AddWithTx does the same than the Add method, but allowing to pass the
// db.WriteTx that is used. The db.WriteTx will not be committed inside this
// method.
func (t *Tree) AddWithTx(wTx db.WriteTx, k, v []byte) error {
t.Lock()
defer t.Unlock()
if !t.editable() {
return ErrSnapshotNotEditable
}
return t.addWithTx(wTx, k, v)
}
// warning: addWithTx does not use the Tree mutex, the mutex is responsibility
// of the methods calling this method, and same with t.editable().
func (t *Tree) addWithTx(wTx db.WriteTx, k, v []byte) error {
root, err := t.RootWithTx(wTx)
if err != nil {
return err
}
root, err = t.add(wTx, root, 0, k, v) // add from level 0
if err != nil {
return err
}
// store root to db
if err := t.setRoot(wTx, root); err != nil {
return err
}
// update nLeafs
if err = t.incNLeafs(wTx, 1); err != nil {
return err
}
return nil
}
// keyPathFromKey returns the keyPath and checks that the key is not bigger
// than maximum key length for the tree maxLevels size.
// This is because if the key bits length is bigger than the maxLevels of the
// tree, two different keys that their difference is at the end, will collision
// in the same leaf of the tree (at the max depth).
func keyPathFromKey(maxLevels int, k []byte) ([]byte, error) {
maxKeyLen := int(math.Ceil(float64(maxLevels) / float64(8))) //nolint:gomnd
if len(k) > maxKeyLen {
return nil, fmt.Errorf("len(k) can not be bigger than ceil(maxLevels/8), where"+
" len(k): %d, maxLevels: %d, max key len=ceil(maxLevels/8): %d. Might need"+
" a bigger tree depth (maxLevels>=%d) in order to input keys of length %d",
len(k), maxLevels, maxKeyLen, len(k)*8, len(k)) //nolint:gomnd
}
keyPath := make([]byte, maxKeyLen) //nolint:gomnd
copy(keyPath[:], k)
return keyPath, nil
}
// checkKeyValueLen checks the key length and value length. This method is used
// when adding single leafs and also when adding a batch. The limits of lengths
// used are derived from the encoding of tree dumps: 1 byte to define the
// length of the keys (2^8-1 bytes length)), and 2 bytes to define the length
// of the values (2^16-1 bytes length).
func checkKeyValueLen(k, v []byte) error {
if len(k) > maxUint8 {
return fmt.Errorf("len(k)=%v, can not be bigger than %v",
len(k), maxUint8)
}
if len(v) > maxUint16 {
return fmt.Errorf("len(v)=%v, can not be bigger than %v",
len(v), maxUint16)
}
return nil
}
func (t *Tree) add(wTx db.WriteTx, root []byte, fromLvl int, k, v []byte) ([]byte, error) {
if err := checkKeyValueLen(k, v); err != nil {
return nil, err
}
keyPath, err := keyPathFromKey(t.maxLevels, k)
if err != nil {
return nil, err
}
path := getPath(t.maxLevels, keyPath)
// go down to the leaf
var siblings [][]byte
_, _, siblings, err = t.down(wTx, k, root, siblings, path, fromLvl, false)
if err != nil {
return nil, err
}
leafKey, leafValue, err := t.newLeafValue(k, v)
if err != nil {
return nil, err
}
if err := wTx.Set(leafKey, leafValue); err != nil {
return nil, err
}
// go up to the root
if len(siblings) == 0 {
// return the leafKey as root
return leafKey, nil
}
root, err = t.up(wTx, leafKey, siblings, path, len(siblings)-1, fromLvl)
if err != nil {
return nil, err
}
return root, nil
}
// down goes down to the leaf recursively
func (t *Tree) down(rTx db.Reader, newKey, currKey []byte, siblings [][]byte,
path []bool, currLvl int, getLeaf bool) (
[]byte, []byte, [][]byte, error) {
if currLvl > t.maxLevels {
return nil, nil, nil, ErrMaxLevel
}
var err error
var currValue []byte
if bytes.Equal(currKey, t.emptyHash) {
// empty value
return currKey, emptyValue, siblings, nil
}
currValue, err = rTx.Get(currKey)
if err != nil {
return nil, nil, nil, err
}
switch currValue[0] {
case PrefixValueEmpty: // empty
fmt.Printf("newKey: %s, currKey: %s, currLvl: %d, currValue: %s\n",
hex.EncodeToString(newKey), hex.EncodeToString(currKey),
currLvl, hex.EncodeToString(currValue))
panic("This point should not be reached, as the 'if currKey==t.emptyHash'" +
" above should avoid reaching this point. This panic is temporary" +
" for reporting purposes, will be deleted in future versions." +
" Please paste this log (including the previous log lines) in a" +
" new issue: https://github.com/vocdoni/arbo/issues/new") // TMP
case PrefixValueLeaf: // leaf
if !bytes.Equal(currValue, emptyValue) {
if getLeaf {
return currKey, currValue, siblings, nil
}
oldLeafKey, _ := ReadLeafValue(currValue)
if bytes.Equal(newKey, oldLeafKey) {
return nil, nil, nil, ErrKeyAlreadyExists
}
oldLeafKeyFull, err := keyPathFromKey(t.maxLevels, oldLeafKey)
if err != nil {
return nil, nil, nil, err
}
// if currKey is already used, go down until paths diverge
oldPath := getPath(t.maxLevels, oldLeafKeyFull)
siblings, err = t.downVirtually(siblings, currKey, newKey, oldPath, path, currLvl)
if err != nil {
return nil, nil, nil, err
}
}
return currKey, currValue, siblings, nil
case PrefixValueIntermediate: // intermediate
if len(currValue) != PrefixValueLen+t.hashFunction.Len()*2 {
return nil, nil, nil,
fmt.Errorf("intermediate value invalid length (expected: %d, actual: %d)",
PrefixValueLen+t.hashFunction.Len()*2, len(currValue))
}
// collect siblings while going down
if path[currLvl] {
// right
lChild, rChild := ReadIntermediateChilds(currValue)
siblings = append(siblings, lChild)
return t.down(rTx, newKey, rChild, siblings, path, currLvl+1, getLeaf)
}
// left
lChild, rChild := ReadIntermediateChilds(currValue)
siblings = append(siblings, rChild)
return t.down(rTx, newKey, lChild, siblings, path, currLvl+1, getLeaf)
default:
return nil, nil, nil, ErrInvalidValuePrefix
}
}
// downVirtually is used when in a leaf already exists, and a new leaf which
// shares the path until the existing leaf is being added
func (t *Tree) downVirtually(siblings [][]byte, oldKey, newKey []byte, oldPath,
newPath []bool, currLvl int) ([][]byte, error) {
var err error
if currLvl > t.maxLevels-1 {
return nil, ErrMaxVirtualLevel
}
if oldPath[currLvl] == newPath[currLvl] {
siblings = append(siblings, t.emptyHash)
siblings, err = t.downVirtually(siblings, oldKey, newKey, oldPath, newPath, currLvl+1)
if err != nil {
return nil, err
}
return siblings, nil
}
// reached the divergence
siblings = append(siblings, oldKey)
return siblings, nil
}
// up goes up recursively updating the intermediate nodes
func (t *Tree) up(wTx db.WriteTx, key []byte, siblings [][]byte, path []bool,
currLvl, toLvl int) ([]byte, error) {
var k, v []byte
var err error
if path[currLvl+toLvl] {
k, v, err = t.newIntermediate(siblings[currLvl], key)
if err != nil {
return nil, err
}
} else {
k, v, err = t.newIntermediate(key, siblings[currLvl])
if err != nil {
return nil, err
}
}
// store k-v to db
if err = wTx.Set(k, v); err != nil {
return nil, err
}
if currLvl == 0 {
// reached the root
return k, nil
}
return t.up(wTx, k, siblings, path, currLvl-1, toLvl)
}
func (t *Tree) newLeafValue(k, v []byte) ([]byte, []byte, error) {
t.dbg.incHash()
return newLeafValue(t.hashFunction, k, v)
}
// newLeafValue takes a key & value from a leaf, and computes the leaf hash,
// which is used as the leaf key. And the value is the concatenation of the
// inputed key & value. The output of this function is used as key-value to
// store the leaf in the DB.
// [ 1 byte | 1 byte | N bytes | M bytes ]
// [ type of node | length of key | key | value ]
func newLeafValue(hashFunc HashFunction, k, v []byte) ([]byte, []byte, error) {
if err := checkKeyValueLen(k, v); err != nil {
return nil, nil, err
}
leafKey, err := hashFunc.Hash(k, v, []byte{1})
if err != nil {
return nil, nil, err
}
var leafValue []byte
leafValue = append(leafValue, byte(PrefixValueLeaf))
leafValue = append(leafValue, byte(len(k)))
leafValue = append(leafValue, k...)
leafValue = append(leafValue, v...)
return leafKey, leafValue, nil
}
// ReadLeafValue reads from a byte array the leaf key & value
func ReadLeafValue(b []byte) ([]byte, []byte) {
if len(b) < PrefixValueLen {
return []byte{}, []byte{}
}
kLen := b[1]
if len(b) < PrefixValueLen+int(kLen) {
return []byte{}, []byte{}
}
k := b[PrefixValueLen : PrefixValueLen+kLen]
v := b[PrefixValueLen+kLen:]
return k, v
}
func (t *Tree) newIntermediate(l, r []byte) ([]byte, []byte, error) {
t.dbg.incHash()
return newIntermediate(t.hashFunction, l, r)
}
// newIntermediate takes the left & right keys of a intermediate node, and
// computes its hash. Returns the hash of the node, which is the node key, and a
// byte array that contains the value (which contains the left & right child
// keys) to store in the DB.
// [ 1 byte | 1 byte | N bytes | N bytes ]
// [ type of node | length of left key | left key | right key ]
func newIntermediate(hashFunc HashFunction, l, r []byte) ([]byte, []byte, error) {
b := make([]byte, PrefixValueLen+hashFunc.Len()*2)
b[0] = PrefixValueIntermediate
if len(l) > maxUint8 {
return nil, nil, fmt.Errorf("newIntermediate: len(l) > %v", maxUint8)
}
b[1] = byte(len(l))
copy(b[PrefixValueLen:PrefixValueLen+hashFunc.Len()], l)
copy(b[PrefixValueLen+hashFunc.Len():], r)
key, err := hashFunc.Hash(l, r)
if err != nil {
return nil, nil, err
}
return key, b, nil
}
// ReadIntermediateChilds reads from a byte array the two childs keys
func ReadIntermediateChilds(b []byte) ([]byte, []byte) {
if len(b) < PrefixValueLen {
return []byte{}, []byte{}
}
lLen := b[1]
if len(b) < PrefixValueLen+int(lLen) {
return []byte{}, []byte{}
}
l := b[PrefixValueLen : PrefixValueLen+lLen]
r := b[PrefixValueLen+lLen:]
return l, r
}
func getPath(numLevels int, k []byte) []bool {
path := make([]bool, numLevels)
for n := 0; n < numLevels; n++ {
path[n] = k[n/8]&(1<<(n%8)) != 0
}
return path
}
// Update updates the value for a given existing key. If the given key does not
// exist, returns an error.
func (t *Tree) Update(k, v []byte) error {
wTx := t.db.WriteTx()
defer wTx.Discard()
if err := t.UpdateWithTx(wTx, k, v); err != nil {
return err
}
return wTx.Commit()
}
// UpdateWithTx does the same than the Update method, but allowing to pass the
// db.WriteTx that is used. The db.WriteTx will not be committed inside this
// method.
func (t *Tree) UpdateWithTx(wTx db.WriteTx, k, v []byte) error {
t.Lock()
defer t.Unlock()
if !t.editable() {
return ErrSnapshotNotEditable
}
keyPath, err := keyPathFromKey(t.maxLevels, k)
if err != nil {
return err
}
path := getPath(t.maxLevels, keyPath)
root, err := t.RootWithTx(wTx)
if err != nil {
return err
}
var siblings [][]byte
_, valueAtBottom, siblings, err := t.down(wTx, k, root, siblings, path, 0, true)
if err != nil {
return err
}
oldKey, _ := ReadLeafValue(valueAtBottom)
if !bytes.Equal(oldKey, k) {
return ErrKeyNotFound
}
leafKey, leafValue, err := t.newLeafValue(k, v)
if err != nil {
return err
}
if err := wTx.Set(leafKey, leafValue); err != nil {
return err
}
// go up to the root
if len(siblings) == 0 {
return t.setRoot(wTx, leafKey)
}
root, err = t.up(wTx, leafKey, siblings, path, len(siblings)-1, 0)
if err != nil {
return err
}
// store root to db
if err := t.setRoot(wTx, root); err != nil {
return err
}
return nil
}
// GenProof generates a MerkleTree proof for the given key. The leaf value is
// returned, together with the packed siblings of the proof, and a boolean
// parameter that indicates if the proof is of existence (true) or not (false).
func (t *Tree) GenProof(k []byte) ([]byte, []byte, []byte, bool, error) {
return t.GenProofWithTx(t.db, k)
}
// GenProofWithTx does the same than the GenProof method, but allowing to pass
// the db.ReadTx that is used.
func (t *Tree) GenProofWithTx(rTx db.Reader, k []byte) ([]byte, []byte, []byte, bool, error) {
keyPath, err := keyPathFromKey(t.maxLevels, k)
if err != nil {
return nil, nil, nil, false, err
}
path := getPath(t.maxLevels, keyPath)
root, err := t.RootWithTx(rTx)
if err != nil {
return nil, nil, nil, false, err
}
// go down to the leaf
var siblings [][]byte
_, value, siblings, err := t.down(rTx, k, root, siblings, path, 0, true)
if err != nil {
return nil, nil, nil, false, err
}
s, err := PackSiblings(t.hashFunction, siblings)
if err != nil {
return nil, nil, nil, false, err
}
leafK, leafV := ReadLeafValue(value)
if !bytes.Equal(k, leafK) {
// key not in tree, proof of non-existence
return leafK, leafV, s, false, nil
}
return leafK, leafV, s, true, nil
}
// PackSiblings packs the siblings into a byte array.
// [ 2 byte | 2 byte | L bytes | S * N bytes ]
// [ full length | bitmap length (L) | bitmap | N non-zero siblings ]
// Where the bitmap indicates if the sibling is 0 or a value from the siblings
// array. And S is the size of the output of the hash function used for the
// Tree. The 2 2-byte that define the full length and bitmap length, are
// encoded in little-endian.
func PackSiblings(hashFunc HashFunction, siblings [][]byte) ([]byte, error) {
var b []byte
var bitmap []bool
emptySibling := make([]byte, hashFunc.Len())
for i := 0; i < len(siblings); i++ {
if bytes.Equal(siblings[i], emptySibling) {
bitmap = append(bitmap, false)
} else {
bitmap = append(bitmap, true)
b = append(b, siblings[i]...)
}
}
bitmapBytes := bitmapToBytes(bitmap)
l := len(bitmapBytes)
if l > maxUint16 {
return nil, fmt.Errorf("PackSiblings: bitmapBytes length > %v", maxUint16)
}
fullLen := 4 + l + len(b) //nolint:gomnd
if fullLen > maxUint16 {
return nil, fmt.Errorf("PackSiblings: fullLen > %v", maxUint16)
}