Skip to content

[Usage]: Problem with concurrency in encoder-based embedder serving with V1 Engine #25842

@gabinguo

Description

@gabinguo

Your current environment

The output of python collect_env.py
Collecting environment information...
uv is set
==============================
        System Info
==============================
OS                           : Rocky Linux 9.6 (Blue Onyx) (x86_64)
GCC version                  : (GCC) 11.5.0 20240719 (Red Hat 11.5.0-5)
Clang version                : Could not collect
CMake version                : Could not collect
Libc version                 : glibc-2.34

==============================
       PyTorch Info
==============================
PyTorch version              : 2.8.0+cu128
Is debug build               : False
CUDA used to build PyTorch   : 12.8
ROCM used to build PyTorch   : N/A

==============================
      Python Environment
==============================
Python version               : 3.12.5 (main, Aug 14 2024, 05:08:31) [Clang 18.1.8 ] (64-bit runtime)
Python platform              : Linux-5.10.0-31-amd64-x86_64-with-glibc2.34

==============================
       CUDA / GPU Info
==============================
Is CUDA available            : True
CUDA runtime version         : 12.8.93
CUDA_MODULE_LOADING set to   : LAZY
GPU models and configuration : GPU 0: NVIDIA GeForce RTX 3080 Ti
Nvidia driver version        : 570.86.10
cuDNN version                : Could not collect
HIP runtime version          : N/A
MIOpen runtime version       : N/A
Is XNNPACK available         : True

==============================
          CPU Info
==============================
Architecture:                         x86_64
CPU op-mode(s):                       32-bit, 64-bit
Address sizes:                        40 bits physical, 48 bits virtual
Byte Order:                           Little Endian
CPU(s):                               2
On-line CPU(s) list:                  0,1
Vendor ID:                            GenuineIntel
Model name:                           Intel(R) Xeon(R) CPU E5-2667 v4 @ 3.20GHz
CPU family:                           6
Model:                                79
Thread(s) per core:                   1
Core(s) per socket:                   1
Socket(s):                            2
Stepping:                             1
BogoMIPS:                             6399.92
Flags:                                fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon rep_good nopl xtopology cpuid pni pclmulqdq vmx ssse3 fma cx16 pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch cpuid_fault invpcid_single pti ssbd ibrs ibpb stibp tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm rdseed adx smap xsaveopt arat umip md_clear arch_capabilities
Virtualization:                       VT-x
L1d cache:                            64 KiB (2 instances)
L1i cache:                            64 KiB (2 instances)
L2 cache:                             8 MiB (2 instances)
L3 cache:                             32 MiB (2 instances)
NUMA node(s):                         1
NUMA node0 CPU(s):                    0,1
Vulnerability Gather data sampling:   Not affected
Vulnerability Itlb multihit:          Not affected
Vulnerability L1tf:                   Mitigation; PTE Inversion; VMX flush not necessary, SMT disabled
Vulnerability Mds:                    Mitigation; Clear CPU buffers; SMT Host state unknown
Vulnerability Meltdown:               Mitigation; PTI
Vulnerability Mmio stale data:        Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed:               Not affected
Vulnerability Spec rstack overflow:   Not affected
Vulnerability Spec store bypass:      Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1:             Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:             Mitigation; Retpolines, IBPB conditional, IBRS_FW, STIBP disabled, RSB filling, PBRSB-eIBRS Not affected
Vulnerability Srbds:                  Not affected
Vulnerability Tsx async abort:        Mitigation; Clear CPU buffers; SMT Host state unknown

==============================
Versions of relevant libraries
==============================
[pip3] flashinfer-python==0.3.1.post1
[pip3] numpy==2.2.6
[pip3] nvidia-cublas-cu12==12.8.4.1
[pip3] nvidia-cuda-cupti-cu12==12.8.90
[pip3] nvidia-cuda-nvrtc-cu12==12.8.93
[pip3] nvidia-cuda-runtime-cu12==12.8.90
[pip3] nvidia-cudnn-cu12==9.10.2.21
[pip3] nvidia-cudnn-frontend==1.14.1
[pip3] nvidia-cufft-cu12==11.3.3.83
[pip3] nvidia-cufile-cu12==1.13.1.3
[pip3] nvidia-curand-cu12==10.3.9.90
[pip3] nvidia-cusolver-cu12==11.7.3.90
[pip3] nvidia-cusparse-cu12==12.5.8.93
[pip3] nvidia-cusparselt-cu12==0.7.1
[pip3] nvidia-ml-py==13.580.82
[pip3] nvidia-nccl-cu12==2.27.3
[pip3] nvidia-nvjitlink-cu12==12.8.93
[pip3] nvidia-nvtx-cu12==12.8.90
[pip3] pynvml==13.0.1
[pip3] pyzmq==27.1.0
[pip3] torch==2.8.0
[pip3] torchaudio==2.8.0
[pip3] torchvision==0.23.0
[pip3] transformers==4.56.2
[pip3] triton==3.4.0
[conda] Could not collect

==============================
         vLLM Info
==============================
ROCM Version                 : Could not collect
vLLM Version                 : 0.10.2
vLLM Build Flags:
  CUDA Archs: Not Set; ROCm: Disabled
GPU Topology:
        GPU0    CPU Affinity    NUMA Affinity   GPU NUMA ID
GPU0     X      0-1     0               N/A

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

==============================
     Environment Variables
==============================
NVIDIA_VISIBLE_DEVICES=all
NVIDIA_REQUIRE_CUDA=cuda>=12.8 brand=unknown,driver>=470,driver<471 brand=grid,driver>=470,driver<471 brand=tesla,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=vapps,driver>=470,driver<471 brand=vpc,driver>=470,driver<471 brand=vcs,driver>=470,driver<471 brand=vws,driver>=470,driver<471 brand=cloudgaming,driver>=470,driver<471 brand=unknown,driver>=535,driver<536 brand=grid,driver>=535,driver<536 brand=tesla,driver>=535,driver<536 brand=nvidia,driver>=535,driver<536 brand=quadro,driver>=535,driver<536 brand=quadrortx,driver>=535,driver<536 brand=nvidiartx,driver>=535,driver<536 brand=vapps,driver>=535,driver<536 brand=vpc,driver>=535,driver<536 brand=vcs,driver>=535,driver<536 brand=vws,driver>=535,driver<536 brand=cloudgaming,driver>=535,driver<536 brand=unknown,driver>=550,driver<551 brand=grid,driver>=550,driver<551 brand=tesla,driver>=550,driver<551 brand=nvidia,driver>=550,driver<551 brand=quadro,driver>=550,driver<551 brand=quadrortx,driver>=550,driver<551 brand=nvidiartx,driver>=550,driver<551 brand=vapps,driver>=550,driver<551 brand=vpc,driver>=550,driver<551 brand=vcs,driver>=550,driver<551 brand=vws,driver>=550,driver<551 brand=cloudgaming,driver>=550,driver<551 brand=unknown,driver>=560,driver<561 brand=grid,driver>=560,driver<561 brand=tesla,driver>=560,driver<561 brand=nvidia,driver>=560,driver<561 brand=quadro,driver>=560,driver<561 brand=quadrortx,driver>=560,driver<561 brand=nvidiartx,driver>=560,driver<561 brand=vapps,driver>=560,driver<561 brand=vpc,driver>=560,driver<561 brand=vcs,driver>=560,driver<561 brand=vws,driver>=560,driver<561 brand=cloudgaming,driver>=560,driver<561 brand=unknown,driver>=565,driver<566 brand=grid,driver>=565,driver<566 brand=tesla,driver>=565,driver<566 brand=nvidia,driver>=565,driver<566 brand=quadro,driver>=565,driver<566 brand=quadrortx,driver>=565,driver<566 brand=nvidiartx,driver>=565,driver<566 brand=vapps,driver>=565,driver<566 brand=vpc,driver>=565,driver<566 brand=vcs,driver>=565,driver<566 brand=vws,driver>=565,driver<566 brand=cloudgaming,driver>=565,driver<566
NCCL_VERSION=2.25.1
NVIDIA_DRIVER_CAPABILITIES=compute,utility
NVIDIA_PRODUCT_NAME=CUDA
CUDA_VERSION=12.8.1
VLLM_CONFIGURE_LOGGING=1
LD_LIBRARY_PATH=/usr/local/cuda/lib64:/usr/local/cuda/lib64
VLLM_USE_V1=1
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY

How would you like to use vllm

Dear vLLM team : )

I would like to ask a question regarding the embedding model serving, specifically BAAI/bge-large-en-v1.5 model.

I served it with cli command:

vllm serve BAAI/bge-large-en-v1.5 --max-model-len 512 --gpu-memory-utilization 0.9 --max-num-batched-tokens 819200 --max-num-seqs 1600 --dtype float32 --override-pooler-config {pooling_type: MEAN, normalize: true} --enforce-eager
  • --enforce-eager I recently discovered that in vLLM 0.10.2, with V1, I have to put this flag to make the engine run for this model. Found it here

  • More importantly, when I perform a k6 load-test on the vllm embedding server, I found the server handle the incoming requests one after another without multiple requests being processed at the same time. I tried tuning the --max-num-seqs or --max-num-batched-tokens, it didn't help. The only thing helps but not by a lot is the --api-server-count argument. I would like to ask what is the correct configurations to handle X incoming requests at the same time for encoder based model like bge series?

For your information, in the k6 load-test, each virtual user will send a group of 10 requests, while each request has a batch of 32 sentences in the payload.

For X VUs, average request time, i.e. response time for embedding 32 sentences in a request:

  • 1VU, avg req 373.67ms
  • 3VU, avg req 450.71ms
  • 5VU, avg req 507.25ms
  • 8VU, avg req 519.45ms
  • 10VU, avg req 584.41ms
  • 15VU, avg req 761.26ms
  • 20VU, avg req 945.33ms
  • 25VU, avg req 1.15s
  • 30VU, avg req 1.37s
  • 40VU, avg req 1.79s
  • 50VU, avg req 2.22s

I would expect it stays constant the speed for few concurrent requests and start to struggle when we put more requests.

Thanks in advance for your help : )

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.

Metadata

Metadata

Assignees

No one assigned

    Labels

    usageHow to use vllm

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions