-
-
Notifications
You must be signed in to change notification settings - Fork 6.7k
/
Copy pathmetrics.py
732 lines (645 loc) · 31.5 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
import time
from typing import TYPE_CHECKING
from typing import Counter as CollectionsCounter
from typing import Dict, List, Optional, Type, Union, cast
import numpy as np
import prometheus_client
from vllm.config import VllmConfig
from vllm.engine.metrics_types import (StatLoggerBase, Stats,
SupportsMetricsInfo)
from vllm.executor.ray_utils import ray
from vllm.logger import init_logger
if ray is not None:
from ray.util import metrics as ray_metrics
else:
ray_metrics = None
if TYPE_CHECKING:
from vllm.spec_decode.metrics import SpecDecodeWorkerMetrics
logger = init_logger(__name__)
prometheus_client.disable_created_metrics()
# The begin-* and end* here are used by the documentation generator
# to extract the metrics definitions.
# begin-metrics-definitions
class Metrics:
"""
vLLM uses a multiprocessing-based frontend for the OpenAI server.
This means that we need to run prometheus_client in multiprocessing mode
See https://prometheus.github.io/client_python/multiprocess/ for more
details on limitations.
"""
labelname_finish_reason = "finished_reason"
labelname_waiting_lora_adapters = "waiting_lora_adapters"
labelname_running_lora_adapters = "running_lora_adapters"
labelname_max_lora = "max_lora"
_gauge_cls = prometheus_client.Gauge
_counter_cls = prometheus_client.Counter
_histogram_cls = prometheus_client.Histogram
def __init__(self, labelnames: List[str], vllm_config: VllmConfig):
# Unregister any existing vLLM collectors (for CI/CD)
self._unregister_vllm_metrics()
max_model_len = vllm_config.model_config.max_model_len
# System stats
# Scheduler State
self.gauge_scheduler_running = self._gauge_cls(
name="vllm:num_requests_running",
documentation="Number of requests currently running on GPU.",
labelnames=labelnames,
multiprocess_mode="sum")
self.gauge_scheduler_waiting = self._gauge_cls(
name="vllm:num_requests_waiting",
documentation="Number of requests waiting to be processed.",
labelnames=labelnames,
multiprocess_mode="sum")
self.gauge_lora_info = self._gauge_cls(
name="vllm:lora_requests_info",
documentation="Running stats on lora requests.",
labelnames=[
self.labelname_running_lora_adapters,
self.labelname_max_lora,
self.labelname_waiting_lora_adapters,
],
multiprocess_mode="livemostrecent",
)
self.gauge_scheduler_swapped = self._gauge_cls(
name="vllm:num_requests_swapped",
documentation="Number of requests swapped to CPU.",
labelnames=labelnames,
multiprocess_mode="sum")
# KV Cache Usage in %
self.gauge_gpu_cache_usage = self._gauge_cls(
name="vllm:gpu_cache_usage_perc",
documentation="GPU KV-cache usage. 1 means 100 percent usage.",
labelnames=labelnames,
multiprocess_mode="sum")
self.gauge_cpu_cache_usage = self._gauge_cls(
name="vllm:cpu_cache_usage_perc",
documentation="CPU KV-cache usage. 1 means 100 percent usage.",
labelnames=labelnames,
multiprocess_mode="sum")
# Prefix caching block hit rate
self.gauge_cpu_prefix_cache_hit_rate = self._gauge_cls(
name="vllm:cpu_prefix_cache_hit_rate",
documentation="CPU prefix cache block hit rate.",
labelnames=labelnames,
multiprocess_mode="sum")
self.gauge_gpu_prefix_cache_hit_rate = self._gauge_cls(
name="vllm:gpu_prefix_cache_hit_rate",
documentation="GPU prefix cache block hit rate.",
labelnames=labelnames,
multiprocess_mode="sum")
# Iteration stats
self.counter_num_preemption = self._counter_cls(
name="vllm:num_preemptions_total",
documentation="Cumulative number of preemption from the engine.",
labelnames=labelnames)
self.counter_prompt_tokens = self._counter_cls(
name="vllm:prompt_tokens_total",
documentation="Number of prefill tokens processed.",
labelnames=labelnames)
self.counter_generation_tokens = self._counter_cls(
name="vllm:generation_tokens_total",
documentation="Number of generation tokens processed.",
labelnames=labelnames)
self.counter_tokens = self._counter_cls(
name="vllm:tokens_total",
documentation="Number of prefill plus generation tokens processed.",
labelnames=labelnames)
buckets = [1, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8096]
if not vllm_config.model_config.enforce_eager:
buckets = vllm_config.compilation_config.capture_sizes.copy()
buckets.sort()
self.histogram_iteration_tokens = self._histogram_cls(
name="vllm:iteration_tokens_total",
documentation="Histogram of number of tokens per engine_step.",
labelnames=labelnames,
buckets=buckets)
self.histogram_time_to_first_token = self._histogram_cls(
name="vllm:time_to_first_token_seconds",
documentation="Histogram of time to first token in seconds.",
labelnames=labelnames,
buckets=[
0.001, 0.005, 0.01, 0.02, 0.04, 0.06, 0.08, 0.1, 0.25, 0.5,
0.75, 1.0, 2.5, 5.0, 7.5, 10.0
])
self.histogram_time_per_output_token = self._histogram_cls(
name="vllm:time_per_output_token_seconds",
documentation="Histogram of time per output token in seconds.",
labelnames=labelnames,
buckets=[
0.01, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.75,
1.0, 2.5
])
# Request stats
# Latency
request_latency_buckets = [
0.3, 0.5, 0.8, 1.0, 1.5, 2.0, 2.5, 5.0, 10.0, 15.0, 20.0, 30.0,
40.0, 50.0, 60.0
]
self.histogram_e2e_time_request = self._histogram_cls(
name="vllm:e2e_request_latency_seconds",
documentation="Histogram of end to end request latency in seconds.",
labelnames=labelnames,
buckets=request_latency_buckets)
self.histogram_queue_time_request = self._histogram_cls(
name="vllm:request_queue_time_seconds",
documentation=
"Histogram of time spent in WAITING phase for request.",
labelnames=labelnames,
buckets=request_latency_buckets)
self.histogram_inference_time_request = self._histogram_cls(
name="vllm:request_inference_time_seconds",
documentation=
"Histogram of time spent in RUNNING phase for request.",
labelnames=labelnames,
buckets=request_latency_buckets)
self.histogram_prefill_time_request = self._histogram_cls(
name="vllm:request_prefill_time_seconds",
documentation=
"Histogram of time spent in PREFILL phase for request.",
labelnames=labelnames,
buckets=request_latency_buckets)
self.histogram_decode_time_request = self._histogram_cls(
name="vllm:request_decode_time_seconds",
documentation=
"Histogram of time spent in DECODE phase for request.",
labelnames=labelnames,
buckets=request_latency_buckets)
self.histogram_time_in_queue_request = self._histogram_cls(
name="vllm:time_in_queue_requests",
documentation=
"Histogram of time the request spent in the queue in seconds.",
labelnames=labelnames,
buckets=request_latency_buckets)
self.histogram_model_forward_time_request = self._histogram_cls(
name="vllm:model_forward_time_milliseconds",
documentation=
"Histogram of time spent in the model forward pass in ms.",
labelnames=labelnames,
buckets=build_1_2_3_5_8_buckets(3000))
self.histogram_model_execute_time_request = self._histogram_cls(
name="vllm:model_execute_time_milliseconds",
documentation=
"Histogram of time spent in the model execute function in ms.",
labelnames=labelnames,
buckets=build_1_2_3_5_8_buckets(3000))
# Metadata
self.histogram_num_prompt_tokens_request = self._histogram_cls(
name="vllm:request_prompt_tokens",
documentation="Number of prefill tokens processed.",
labelnames=labelnames,
buckets=build_1_2_5_buckets(max_model_len),
)
self.histogram_num_generation_tokens_request = \
self._histogram_cls(
name="vllm:request_generation_tokens",
documentation="Number of generation tokens processed.",
labelnames=labelnames,
buckets=build_1_2_5_buckets(max_model_len),
)
self.histogram_max_num_generation_tokens_request = self._histogram_cls(
name="vllm:request_max_num_generation_tokens",
documentation=
"Histogram of maximum number of requested generation tokens.",
labelnames=labelnames,
buckets=build_1_2_5_buckets(max_model_len))
self.histogram_n_request = self._histogram_cls(
name="vllm:request_params_n",
documentation="Histogram of the n request parameter.",
labelnames=labelnames,
buckets=[1, 2, 5, 10, 20],
)
self.histogram_max_tokens_request = self._histogram_cls(
name="vllm:request_params_max_tokens",
documentation="Histogram of the max_tokens request parameter.",
labelnames=labelnames,
buckets=build_1_2_5_buckets(max_model_len),
)
self.counter_request_success = self._counter_cls(
name="vllm:request_success_total",
documentation="Count of successfully processed requests.",
labelnames=labelnames + [Metrics.labelname_finish_reason])
# Speculatie decoding stats
self.gauge_spec_decode_draft_acceptance_rate = self._gauge_cls(
name="vllm:spec_decode_draft_acceptance_rate",
documentation="Speulative token acceptance rate.",
labelnames=labelnames,
multiprocess_mode="sum")
self.gauge_spec_decode_efficiency = self._gauge_cls(
name="vllm:spec_decode_efficiency",
documentation="Speculative decoding system efficiency.",
labelnames=labelnames,
multiprocess_mode="sum")
self.counter_spec_decode_num_accepted_tokens = (self._counter_cls(
name="vllm:spec_decode_num_accepted_tokens_total",
documentation="Number of accepted tokens.",
labelnames=labelnames))
self.counter_spec_decode_num_draft_tokens = self._counter_cls(
name="vllm:spec_decode_num_draft_tokens_total",
documentation="Number of draft tokens.",
labelnames=labelnames)
self.counter_spec_decode_num_emitted_tokens = (self._counter_cls(
name="vllm:spec_decode_num_emitted_tokens_total",
documentation="Number of emitted tokens.",
labelnames=labelnames))
self.gauge_spec_decode_mean_accepted_tokens = self._gauge_cls(
name="vllm:spec_decode_mean_accepted_tokens",
documentation="Mean length of speculative tokens.",
labelnames=labelnames,
multiprocess_mode="all")
# Deprecated in favor of vllm:prompt_tokens_total
self.gauge_avg_prompt_throughput = self._gauge_cls(
name="vllm:avg_prompt_throughput_toks_per_s",
documentation="Average prefill throughput in tokens/s.",
labelnames=labelnames,
multiprocess_mode="sum",
)
# Deprecated in favor of vllm:generation_tokens_total
self.gauge_avg_generation_throughput = self._gauge_cls(
name="vllm:avg_generation_throughput_toks_per_s",
documentation="Average generation throughput in tokens/s.",
labelnames=labelnames,
multiprocess_mode="sum",
)
# end-metrics-definitions
def _unregister_vllm_metrics(self) -> None:
for collector in list(prometheus_client.REGISTRY._collector_to_names):
if hasattr(collector, "_name") and "vllm" in collector._name:
prometheus_client.REGISTRY.unregister(collector)
class _RayGaugeWrapper:
"""Wraps around ray.util.metrics.Gauge to provide same API as
prometheus_client.Gauge"""
def __init__(self,
name: str,
documentation: str = "",
labelnames: Optional[List[str]] = None,
multiprocess_mode: str = ""):
del multiprocess_mode
labelnames_tuple = tuple(labelnames) if labelnames else None
self._gauge = ray_metrics.Gauge(name=name,
description=documentation,
tag_keys=labelnames_tuple)
def labels(self, **labels):
self._gauge.set_default_tags(labels)
return self
def set(self, value: Union[int, float]):
return self._gauge.set(value)
def set_to_current_time(self):
# ray metrics doesn't have set_to_current time, https://docs.ray.io/en/latest/_modules/ray/util/metrics.html
return self._gauge.set(time.time())
class _RayCounterWrapper:
"""Wraps around ray.util.metrics.Counter to provide same API as
prometheus_client.Counter"""
def __init__(self,
name: str,
documentation: str = "",
labelnames: Optional[List[str]] = None):
labelnames_tuple = tuple(labelnames) if labelnames else None
self._counter = ray_metrics.Counter(name=name,
description=documentation,
tag_keys=labelnames_tuple)
def labels(self, **labels):
self._counter.set_default_tags(labels)
return self
def inc(self, value: Union[int, float] = 1.0):
if value == 0:
return
return self._counter.inc(value)
class _RayHistogramWrapper:
"""Wraps around ray.util.metrics.Histogram to provide same API as
prometheus_client.Histogram"""
def __init__(self,
name: str,
documentation: str = "",
labelnames: Optional[List[str]] = None,
buckets: Optional[List[float]] = None):
labelnames_tuple = tuple(labelnames) if labelnames else None
boundaries = buckets if buckets else []
self._histogram = ray_metrics.Histogram(name=name,
description=documentation,
tag_keys=labelnames_tuple,
boundaries=boundaries)
def labels(self, **labels):
self._histogram.set_default_tags(labels)
return self
def observe(self, value: Union[int, float]):
return self._histogram.observe(value)
class RayMetrics(Metrics):
"""
RayMetrics is used by RayPrometheusStatLogger to log to Ray metrics.
Provides the same metrics as Metrics but uses Ray's util.metrics library.
"""
_gauge_cls: Type[prometheus_client.Gauge] = cast(
Type[prometheus_client.Gauge], _RayGaugeWrapper)
_counter_cls: Type[prometheus_client.Counter] = cast(
Type[prometheus_client.Counter], _RayCounterWrapper)
_histogram_cls: Type[prometheus_client.Histogram] = cast(
Type[prometheus_client.Histogram], _RayHistogramWrapper)
def __init__(self, labelnames: List[str], vllm_config: VllmConfig):
if ray_metrics is None:
raise ImportError("RayMetrics requires Ray to be installed.")
super().__init__(labelnames, vllm_config)
def _unregister_vllm_metrics(self) -> None:
# No-op on purpose
pass
def build_buckets(mantissa_lst: List[int], max_value: int) -> List[int]:
"""
Builds a list of buckets with increasing powers of 10 multiplied by
mantissa values until the value exceeds the specified maximum.
"""
exponent = 0
buckets: List[int] = []
while True:
for m in mantissa_lst:
value = m * 10**exponent
if value <= max_value:
buckets.append(value)
else:
return buckets
exponent += 1
def build_1_2_5_buckets(max_value: int) -> List[int]:
"""
Example:
>>> build_1_2_5_buckets(100)
[1, 2, 5, 10, 20, 50, 100]
"""
return build_buckets([1, 2, 5], max_value)
def build_1_2_3_5_8_buckets(max_value: int) -> List[int]:
"""
Example:
>>> build_1_2_3_5_8_buckets(100)
[1, 2, 3, 5, 8, 10, 20, 30, 50, 80, 100]
"""
return build_buckets([1, 2, 3, 5, 8], max_value)
def local_interval_elapsed(now: float, last_log: float,
local_interval: float) -> bool:
elapsed_time = now - last_log
return elapsed_time > local_interval
def get_throughput(tracked_stats: List[int], now: float,
last_log: float) -> float:
return float(np.sum(tracked_stats) / (now - last_log))
class LoggingStatLogger(StatLoggerBase):
"""LoggingStatLogger is used in LLMEngine to log to Stdout."""
def __init__(self, local_interval: float, vllm_config: VllmConfig) -> None:
super().__init__(local_interval, vllm_config)
self.last_prompt_throughput: Optional[float] = None
self.last_generation_throughput: Optional[float] = None
def log(self, stats: Stats) -> None:
"""Called by LLMEngine.
Logs to Stdout every self.local_interval seconds."""
# Save tracked stats for token counters.
self.num_prompt_tokens.append(stats.num_prompt_tokens_iter)
self.num_generation_tokens.append(stats.num_generation_tokens_iter)
# Update spec decode metrics
self.maybe_update_spec_decode_metrics(stats)
# Log locally every local_interval seconds.
if local_interval_elapsed(stats.now, self.last_local_log,
self.local_interval):
# Compute summary metrics for tracked stats (and log them
# to promethus if applicable).
prompt_throughput = get_throughput(self.num_prompt_tokens,
now=stats.now,
last_log=self.last_local_log)
generation_throughput = get_throughput(
self.num_generation_tokens,
now=stats.now,
last_log=self.last_local_log)
log_fn = logger.info
if not any((prompt_throughput, generation_throughput,
self.last_prompt_throughput,
self.last_generation_throughput)):
# Avoid log noise on an idle production system
log_fn = logger.debug
log_fn(
"Avg prompt throughput: %.1f tokens/s, "
"Avg generation throughput: %.1f tokens/s, "
"Running: %d reqs, Swapped: %d reqs, "
"Pending: %d reqs, GPU KV cache usage: %.1f%%, "
"CPU KV cache usage: %.1f%%.",
prompt_throughput,
generation_throughput,
stats.num_running_sys,
stats.num_swapped_sys,
stats.num_waiting_sys,
stats.gpu_cache_usage_sys * 100,
stats.cpu_cache_usage_sys * 100,
)
if (stats.cpu_prefix_cache_hit_rate >= 0
or stats.gpu_prefix_cache_hit_rate >= 0):
log_fn(
"Prefix cache hit rate: GPU: %.2f%%, CPU: %.2f%%",
stats.gpu_prefix_cache_hit_rate * 100,
stats.cpu_prefix_cache_hit_rate * 100,
)
if self.spec_decode_metrics is not None:
log_fn(
self._format_spec_decode_metrics_str(
self.spec_decode_metrics))
self._reset(stats, prompt_throughput, generation_throughput)
def _reset(self, stats, prompt_throughput, generation_throughput) -> None:
# Reset tracked stats for next interval.
self.num_prompt_tokens = []
self.num_generation_tokens = []
self.last_local_log = stats.now
self.spec_decode_metrics = None
self.last_prompt_throughput = prompt_throughput
self.last_generation_throughput = generation_throughput
def _format_spec_decode_metrics_str(
self, metrics: "SpecDecodeWorkerMetrics") -> str:
return (
"Speculative metrics: "
f"Draft acceptance rate: {metrics.draft_acceptance_rate:.3f}, "
f"System efficiency: {metrics.system_efficiency:.3f}, "
f"Number of speculative tokens: {metrics.num_spec_tokens}, "
f"Number of accepted tokens: {metrics.accepted_tokens}, "
f"Number of draft tokens: {metrics.draft_tokens}, "
f"Number of emitted tokens: {metrics.emitted_tokens}."
f"Mean accepted tokens length: {metrics.mean_accepted_tokens:.3f}."
)
def info(self, type: str, obj: SupportsMetricsInfo) -> None:
raise NotImplementedError
class PrometheusStatLogger(StatLoggerBase):
"""PrometheusStatLogger is used LLMEngine to log to Promethus."""
_metrics_cls = Metrics
_gauge_cls = prometheus_client.Gauge
def __init__(self, local_interval: float, labels: Dict[str, str],
vllm_config: VllmConfig) -> None:
super().__init__(local_interval, vllm_config)
# Prometheus metrics
self.labels = labels
self.metrics = self._metrics_cls(labelnames=list(labels.keys()),
vllm_config=vllm_config)
def _log_gauge(self, gauge, data: Union[int, float]) -> None:
# Convenience function for logging to gauge.
gauge.labels(**self.labels).set(data)
def _log_counter(self, counter, data: Union[int, float]) -> None:
# Convenience function for logging to counter.
# Prevent ValueError from negative increment
if data < 0:
logger.warning("Skipping negative increment of %g to %s", data,
counter)
return
counter.labels(**self.labels).inc(data)
def _log_counter_labels(self, counter, data: CollectionsCounter,
label_key: str) -> None:
# Convenience function for collection counter of labels.
for label, count in data.items():
counter.labels(**{**self.labels, label_key: label}).inc(count)
def _log_histogram(self, histogram, data: Union[List[int],
List[float]]) -> None:
# Convenience function for logging list to histogram.
for datum in data:
histogram.labels(**self.labels).observe(datum)
def _log_gauge_string(self, gauge, data: Dict[str, str]) -> None:
gauge.labels(**data).set_to_current_time()
def _log_prometheus(self, stats: Stats) -> None:
# System state data
self._log_gauge(self.metrics.gauge_scheduler_running,
stats.num_running_sys)
self._log_gauge(self.metrics.gauge_scheduler_swapped,
stats.num_swapped_sys)
self._log_gauge(self.metrics.gauge_scheduler_waiting,
stats.num_waiting_sys)
self._log_gauge(self.metrics.gauge_gpu_cache_usage,
stats.gpu_cache_usage_sys)
self._log_gauge(self.metrics.gauge_cpu_cache_usage,
stats.cpu_cache_usage_sys)
self._log_gauge(self.metrics.gauge_cpu_prefix_cache_hit_rate,
stats.cpu_prefix_cache_hit_rate)
self._log_gauge(self.metrics.gauge_gpu_prefix_cache_hit_rate,
stats.gpu_prefix_cache_hit_rate)
# Including max-lora in metric, in future this property of lora
# config maybe extended to be dynamic.
lora_info = {
self.metrics.labelname_running_lora_adapters:
",".join(stats.running_lora_adapters),
self.metrics.labelname_waiting_lora_adapters:
",".join(stats.waiting_lora_adapters),
self.metrics.labelname_max_lora:
stats.max_lora,
}
self._log_gauge_string(self.metrics.gauge_lora_info, lora_info)
# Iteration level data
self._log_counter(self.metrics.counter_num_preemption,
stats.num_preemption_iter)
self._log_counter(self.metrics.counter_prompt_tokens,
stats.num_prompt_tokens_iter)
self._log_counter(self.metrics.counter_generation_tokens,
stats.num_generation_tokens_iter)
self._log_histogram(self.metrics.histogram_iteration_tokens,
[stats.num_tokens_iter])
self._log_histogram(self.metrics.histogram_time_to_first_token,
stats.time_to_first_tokens_iter)
self._log_histogram(self.metrics.histogram_time_per_output_token,
stats.time_per_output_tokens_iter)
# Request level data
# Latency
self._log_histogram(self.metrics.histogram_e2e_time_request,
stats.time_e2e_requests)
self._log_histogram(self.metrics.histogram_queue_time_request,
stats.time_queue_requests)
self._log_histogram(self.metrics.histogram_inference_time_request,
stats.time_inference_requests)
self._log_histogram(self.metrics.histogram_prefill_time_request,
stats.time_prefill_requests)
self._log_histogram(self.metrics.histogram_decode_time_request,
stats.time_decode_requests)
self._log_histogram(self.metrics.histogram_time_in_queue_request,
stats.time_in_queue_requests)
self._log_histogram(self.metrics.histogram_model_forward_time_request,
stats.model_forward_time_requests)
self._log_histogram(self.metrics.histogram_model_execute_time_request,
stats.model_execute_time_requests)
# Metadata
finished_reason_counter = CollectionsCounter(
stats.finished_reason_requests)
self._log_counter_labels(self.metrics.counter_request_success,
finished_reason_counter,
Metrics.labelname_finish_reason)
self._log_histogram(self.metrics.histogram_num_prompt_tokens_request,
stats.num_prompt_tokens_requests)
self._log_histogram(
self.metrics.histogram_num_generation_tokens_request,
stats.num_generation_tokens_requests)
self._log_histogram(self.metrics.histogram_n_request, stats.n_requests)
self._log_histogram(
self.metrics.histogram_max_num_generation_tokens_request,
stats.max_num_generation_tokens_requests)
self._log_histogram(self.metrics.histogram_max_tokens_request,
stats.max_tokens_requests)
def _log_prometheus_interval(self, prompt_throughput: float,
generation_throughput: float) -> None:
# Logs metrics to prometheus that are computed every logging_interval.
# Support legacy gauge metrics that make throughput calculations on
# the vLLM side. Moving forward, we should use counters like
# counter_prompt_tokens, counter_generation_tokens
# Which log raw data and calculate summaries using rate() on the
# grafana/prometheus side. See
# https://github.com/vllm-project/vllm/pull/2316#discussion_r1464204666
self.metrics.gauge_avg_prompt_throughput.labels(
**self.labels).set(prompt_throughput)
self.metrics.gauge_avg_generation_throughput.labels(
**self.labels).set(generation_throughput)
def log(self, stats: Stats):
"""Logs to prometheus and tracked stats every iteration."""
# Log to prometheus.
self._log_prometheus(stats)
# Save tracked stats for token counters.
self.num_prompt_tokens.append(stats.num_prompt_tokens_iter)
self.num_generation_tokens.append(stats.num_generation_tokens_iter)
# Update spec decode metrics
self.maybe_update_spec_decode_metrics(stats)
# Log locally every local_interval seconds.
if local_interval_elapsed(stats.now, self.last_local_log,
self.local_interval):
# Compute summary metrics for tracked stats (and log them
# to promethus if applicable).
prompt_throughput = get_throughput(self.num_prompt_tokens,
now=stats.now,
last_log=self.last_local_log)
generation_throughput = get_throughput(
self.num_generation_tokens,
now=stats.now,
last_log=self.last_local_log)
self._log_prometheus_interval(
prompt_throughput=prompt_throughput,
generation_throughput=generation_throughput)
if self.spec_decode_metrics is not None:
self._log_gauge(
self.metrics.gauge_spec_decode_draft_acceptance_rate,
self.spec_decode_metrics.draft_acceptance_rate)
self._log_gauge(self.metrics.gauge_spec_decode_efficiency,
self.spec_decode_metrics.system_efficiency)
self._log_counter(
self.metrics.counter_spec_decode_num_accepted_tokens,
self.spec_decode_metrics.accepted_tokens)
self._log_counter(
self.metrics.counter_spec_decode_num_draft_tokens,
self.spec_decode_metrics.draft_tokens)
self._log_counter(
self.metrics.counter_spec_decode_num_emitted_tokens,
self.spec_decode_metrics.emitted_tokens)
self._log_gauge(
self.metrics.gauge_spec_decode_mean_accepted_tokens,
self.spec_decode_metrics.mean_accepted_tokens)
# Reset tracked stats for next interval.
self.num_prompt_tokens = []
self.num_generation_tokens = []
self.last_local_log = stats.now
self.spec_decode_metrics = None
def info(self, type: str, obj: SupportsMetricsInfo) -> None:
# Info type metrics are syntactic sugar for a gauge permanently set to 1
# Since prometheus multiprocessing mode does not support Info, emulate
# info here with a gauge.
if type == "cache_config":
metrics_info = obj.metrics_info()
info_gauge = self._gauge_cls(
name="vllm:cache_config_info",
documentation="Information of the LLMEngine CacheConfig",
labelnames=metrics_info.keys(),
multiprocess_mode="mostrecent")
info_gauge.labels(**metrics_info).set(1)
class RayPrometheusStatLogger(PrometheusStatLogger):
"""RayPrometheusStatLogger uses Ray metrics instead."""
_metrics_cls = RayMetrics
def info(self, type: str, obj: SupportsMetricsInfo) -> None:
return None