|
| 1 | +from abc import abstractmethod |
| 2 | +import os |
| 3 | +from pathlib import Path |
| 4 | +import torch |
| 5 | +from torch.distributed.checkpoint.state_dict import ( |
| 6 | + get_model_state_dict, |
| 7 | + get_optimizer_state_dict, |
| 8 | + set_model_state_dict, |
| 9 | + set_optimizer_state_dict, |
| 10 | + StateDictOptions, |
| 11 | +) |
| 12 | + |
| 13 | +import torch.distributed as dist |
| 14 | + |
| 15 | + |
| 16 | +class BaseCheckpointer: |
| 17 | + """Helper class to save and load checkpoints. |
| 18 | +
|
| 19 | + Checkpoint file structure: |
| 20 | + ../path/ |
| 21 | + 0/ # epoch number |
| 22 | + model_state_dict.pt |
| 23 | + optimizer_state_dict.pt |
| 24 | + 1/ |
| 25 | + model_state_dict.pt |
| 26 | + optimizer_state_dict.pt |
| 27 | + ... |
| 28 | + """ |
| 29 | + |
| 30 | + def __init__(self, path: Path | str, try_load_last_checkpoint: bool = True): |
| 31 | + self.path = Path(path) |
| 32 | + if try_load_last_checkpoint: |
| 33 | + self.previous_epoch: int = self._get_previous_epoch() |
| 34 | + else: |
| 35 | + self.previous_epoch: int = -1 |
| 36 | + |
| 37 | + @abstractmethod |
| 38 | + def load_model_state_dict(self, model: torch.nn.Module): |
| 39 | + raise NotImplementedError |
| 40 | + |
| 41 | + @abstractmethod |
| 42 | + def load_optimizer_state_dict( |
| 43 | + self, model: torch.nn.Module, optimizer: torch.optim.Optimizer |
| 44 | + ): |
| 45 | + raise NotImplementedError |
| 46 | + |
| 47 | + @abstractmethod |
| 48 | + def save_checkpoint( |
| 49 | + self, model: torch.nn.Module, optimizer: torch.optim.Optimizer, epoch: int |
| 50 | + ): |
| 51 | + raise NotImplementedError |
| 52 | + |
| 53 | + def _get_previous_epoch(self) -> int: |
| 54 | + if not self.path.exists(): |
| 55 | + return -1 |
| 56 | + last_checkpoint_num = -1 |
| 57 | + for d in self.path.iterdir(): |
| 58 | + if d.is_dir(): |
| 59 | + try: |
| 60 | + last_checkpoint_num = max(last_checkpoint_num, int(d.name)) |
| 61 | + except ValueError: |
| 62 | + continue |
| 63 | + return last_checkpoint_num |
| 64 | + |
| 65 | + def model_path(self, epoch: int): |
| 66 | + model_fname = "model_state_dict.pt" |
| 67 | + return self.path / str(epoch) / model_fname |
| 68 | + |
| 69 | + def optimizer_path(self, epoch: int): |
| 70 | + optimizer_fname = "optimizer_state_dict.pt" |
| 71 | + return self.path / str(epoch) / optimizer_fname |
| 72 | + |
| 73 | + |
| 74 | +class SingleGPUCheckpointer(BaseCheckpointer): |
| 75 | + def load_model_state_dict(self, model: torch.nn.Module): |
| 76 | + full_state_dict = torch.load( |
| 77 | + self.model_path(self.previous_epoch), |
| 78 | + weights_only=True, |
| 79 | + map_location="cuda:0", # todo: make this configurable |
| 80 | + ) |
| 81 | + model.load_state_dict(full_state_dict) |
| 82 | + |
| 83 | + def load_optimizer_state_dict( |
| 84 | + self, model: torch.nn.Module, optimizer: torch.optim.Optimizer |
| 85 | + ): |
| 86 | + full_state_dict = torch.load( |
| 87 | + self.optimizer_path(self.previous_epoch), |
| 88 | + weights_only=True, |
| 89 | + map_location="cuda:0", # todo: make this configurable |
| 90 | + ) |
| 91 | + optimizer.load_state_dict(full_state_dict) |
| 92 | + |
| 93 | + def save_checkpoint( |
| 94 | + self, model: torch.nn.Module, optimizer: torch.optim.Optimizer, epoch: int |
| 95 | + ): |
| 96 | + os.makedirs(self.path / str(epoch), exist_ok=True) |
| 97 | + torch.save(model.state_dict(), self.model_path(epoch)) |
| 98 | + torch.save(optimizer.state_dict(), self.optimizer_path(epoch)) |
| 99 | + |
| 100 | + |
| 101 | +class DistributedCheckpointer(BaseCheckpointer): |
| 102 | + def load_model_state_dict(self, model: torch.nn.Module): |
| 103 | + full_state_dict = torch.load( |
| 104 | + self.model_path(self.previous_epoch), |
| 105 | + mmap=True, |
| 106 | + weights_only=True, |
| 107 | + map_location="cpu", |
| 108 | + ) |
| 109 | + set_model_state_dict( |
| 110 | + model, |
| 111 | + full_state_dict, |
| 112 | + options=StateDictOptions(full_state_dict=True, broadcast_from_rank0=True), |
| 113 | + ) |
| 114 | + dist.barrier() |
| 115 | + |
| 116 | + def load_optimizer_state_dict(self, model, optimizer: torch.optim.Optimizer): |
| 117 | + full_state_dict = torch.load( |
| 118 | + self.optimizer_path(self.previous_epoch), |
| 119 | + mmap=True, |
| 120 | + weights_only=True, |
| 121 | + map_location="cpu", |
| 122 | + ) |
| 123 | + set_optimizer_state_dict( |
| 124 | + model, |
| 125 | + optimizer, |
| 126 | + full_state_dict, |
| 127 | + options=StateDictOptions(full_state_dict=True, broadcast_from_rank0=True), |
| 128 | + ) |
| 129 | + dist.barrier() |
| 130 | + |
| 131 | + def save_checkpoint( |
| 132 | + self, model: torch.nn.Module, optimizer: torch.optim.Optimizer, epoch: int |
| 133 | + ): |
| 134 | + model_state_dict = get_model_state_dict( |
| 135 | + model, options=StateDictOptions(full_state_dict=True, cpu_offload=True) |
| 136 | + ) |
| 137 | + optimizer_state_dict = get_optimizer_state_dict( |
| 138 | + model, |
| 139 | + optimizer, |
| 140 | + options=StateDictOptions(full_state_dict=True, cpu_offload=True), |
| 141 | + ) |
| 142 | + |
| 143 | + if dist.get_rank() == 0: |
| 144 | + # Only rank 0 saves the checkpoint |
| 145 | + os.makedirs(self.path / str(epoch), exist_ok=True) |
| 146 | + torch.save(model_state_dict, self.model_path(epoch)) |
| 147 | + torch.save(optimizer_state_dict, self.optimizer_path(epoch)) |
| 148 | + |
| 149 | + dist.barrier() |
0 commit comments