-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathextract.py
135 lines (123 loc) · 4.94 KB
/
extract.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import utility
from ast import literal_eval
from generator import DataGenerator
from networks import AlexNet
from keras.models import Model
from keras.layers import GlobalAveragePooling2D
import numpy as np
import warnings
warnings.filterwarnings("ignore")
import os
os.environ["CUDA_VISIBLE_DEVICES"]="1"
args = utility.get_parser().parse_args()
DATASET = args.data
BATCH_SIZE = args.batch_size
if args.algorithm == "Zhang":
#Vratiti na 180, 180
INPUT_SIZE = (227, 227)
OUTPUT_SIZE = (12, 12)
PROCESSING_CLASSES = [utility.ResizeImage(INPUT_SIZE)]
OUTPUT_FUNCTION = utility.PrepareOutputZhang(OUTPUT_SIZE)
if args.output_type == "single":
INPUT_CHANNELS = [1, 2]
OUTPUT_CAHNNELS = [0]
NUM_CLASSES = 100
elif args.output_type == "double":
INPUT_CHANNELS = [0]
OUTPUT_CAHNNELS = [1]
NUM_CLASSES = 313
else:
raise ValueError("Invalid output type")
elif args.algorithm == 'PCAKmeans':
INPUT_SIZE = (227, 227)
OUTPUT_SIZE = (12, 12)
SINGLE_CLUSTERS = args.single_clusters
DOUBLE_CLUSTERS = args.double_clusters
PROCESSING_CLASSES = [utility.ResizeImage(INPUT_SIZE, preserve_range = True)]
OUTPUT_FUNCTION = utility.PrepareOutputPCA(OUTPUT_SIZE, 'resources/clusters_pca_single_'+str(SINGLE_CLUSTERS)+'.npy',
'resources/clusters_pca_double_'+str(DOUBLE_CLUSTERS)+'.npy')
if args.output_type == "single":
INPUT_CHANNELS = [1, 2]
OUTPUT_CAHNNELS = [0]
NUM_CLASSES = SINGLE_CLUSTERS
elif args.output_type == "double":
INPUT_CHANNELS = [0]
OUTPUT_CAHNNELS = [1]
NUM_CLASSES = DOUBLE_CLUSTERS
else:
raise ValueError("Invalid output type")
elif args.algorithm == 'PCAGrid':
INPUT_SIZE = (227, 227)
OUTPUT_SIZE = (12, 12)
SINGLE_CLUSTERS = args.single_clusters
DOUBLE_CLUSTERS = args.double_clusters
PROCESSING_CLASSES = [utility.ResizeImage(INPUT_SIZE, preserve_range = True)]
OUTPUT_FUNCTION = utility.PrepareOutputPCA(OUTPUT_SIZE, 'resources/clusters_pca_grid_single_'+str(SINGLE_CLUSTERS)+'.npy',
'resources/clusters_pca_grid_double_'+str(DOUBLE_CLUSTERS)+'.npy')
if args.output_type == "single":
INPUT_CHANNELS = [1, 2]
OUTPUT_CAHNNELS = [0]
NUM_CLASSES = SINGLE_CLUSTERS
elif args.output_type == "double":
INPUT_CHANNELS = [0]
OUTPUT_CAHNNELS = [1]
NUM_CLASSES = DOUBLE_CLUSTERS
else:
raise ValueError("Invalid output type")
elif args.algorithm == 'LABKmeans':
INPUT_SIZE = (227,227)
OUTPUT_SIZE = (12, 12)
SINGLE_CLUSTERS = args.single_clusters
DOUBLE_CLUSTERS = args.double_clusters
PROCESSING_CLASSES = [utility.ResizeImage(INPUT_SIZE)]
OUTPUT_FUNCTION = utility.PrepareOutputLAB(OUTPUT_SIZE, 'resources/clusters_lab_single_'+str(SINGLE_CLUSTERS)+'.npy',
'resources/clusters_lab_double_'+str(DOUBLE_CLUSTERS)+'.npy')
if args.output_type == "single":
INPUT_CHANNELS = [1, 2]
OUTPUT_CAHNNELS = [0]
NUM_CLASSES = SINGLE_CLUSTERS
elif args.output_type == "double":
INPUT_CHANNELS = [0]
OUTPUT_CAHNNELS = [1]
NUM_CLASSES = DOUBLE_CLUSTERS
else:
raise ValueError("Invalid output type")
elif args.algorithm == 'LABGrid':
INPUT_SIZE = (227,227)
OUTPUT_SIZE = (12, 12)
SINGLE_CLUSTERS = args.single_clusters
DOUBLE_CLUSTERS = args.double_clusters
PROCESSING_CLASSES = [utility.ResizeImage(INPUT_SIZE)]
OUTPUT_FUNCTION = utility.PrepareOutputLAB(OUTPUT_SIZE, 'resources/clusters_lab_grid_single_'+str(SINGLE_CLUSTERS)+'.npy',
'resources/clusters_lab_grid_double_'+str(DOUBLE_CLUSTERS)+'.npy')
if args.output_type == "single":
INPUT_CHANNELS = [1, 2]
OUTPUT_CAHNNELS = [0]
NUM_CLASSES = SINGLE_CLUSTERS
elif args.output_type == "double":
INPUT_CHANNELS = [0]
OUTPUT_CAHNNELS = [1]
NUM_CLASSES = DOUBLE_CLUSTERS
else:
raise ValueError("Invalid output type")
else:
raise ValueError("Invalid algorithm")
data, labels = utility.read_data(DATASET)
params = {
'input_size': INPUT_SIZE,
'output_size': OUTPUT_SIZE,
'input_channels': INPUT_CHANNELS,
'output_channels': OUTPUT_CAHNNELS,
'num_classes': NUM_CLASSES,
'batch_size': BATCH_SIZE,
'processing_classes': PROCESSING_CLASSES,
'output_function': OUTPUT_FUNCTION,
'shuffle': False
}
generator = DataGenerator(data, **params)
base_model = AlexNet(INPUT_SIZE+(len(INPUT_CHANNELS), ), NUM_CLASSES)
base_model.load_weights(args.weights)
model = Model(inputs = base_model.input, outputs = GlobalAveragePooling2D()(base_model.get_layer('act4').output))
features = model.predict_generator(generator = generator, use_multiprocessing = True, workers = 8, verbose = 1)
with open(args.features, 'wb') as f:
np.savez(f, features, labels)