-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclassification_svm.py
60 lines (47 loc) · 1.7 KB
/
classification_svm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Jul 20 08:56:15 2018
@author: Vladan
"""
import numpy as np
import sklearn.svm
import utility
from sklearn.model_selection import train_test_split
import functools
from sklearn.preprocessing import normalize
args = utility.get_parser().parse_args()
def read_feats(path):
with open(path, 'rb') as f:
feat = np.load(f)
x = feat['arr_0']
y = feat['arr_1']
return y, x
y, x_single = read_feats(args.features)
y, x_double = read_feats(args.weights)
#x_single = normalize(x_single)
#x_double = normalize(x_double)
x = np.concatenate((x_single, x_double), axis = 1)
print(np.min(x_single))
print(np.max(x_single))
print(np.min(x_double))
print(np.max(x_double))
x = normalize(x)
with open(args.results, 'w') as f:
for cc in [1e-1, 1, 1e1, 1e2, 1e3, 1e4, 1e5]:
res = []
print ('C = {:.4f}'.format(cc))
f.write ('C = {:.4f}'.format(cc))
for state in [12, 22, 32, 42, 52, 62]:
x_train, x_test, y_train, y_test = train_test_split(x, y, stratify = y, test_size = 0.5, random_state = state)
clf = sklearn.svm.SVC(C = cc, kernel = 'linear')
clf.fit(x_train, y_train)
ypred = clf.predict(x_test)
acc = 100.0 * np.mean(ypred == y_test)
print('Classification accuracy: {:.2f}%'.format(acc))
f.write('Classification accuracy: {:.2f}%\n'.format(acc))
res.append(acc)
avg = functools.reduce(lambda x, y: x+y, res)
avg /= len(res)
print('Average classification accuracy: {:.2f}%'.format(avg))
f.write('Average classification accuracy: {:.2f}%\n'.format(avg))