-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcalculate_outputs.py
44 lines (33 loc) · 1.34 KB
/
calculate_outputs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
from sklearn.cluster import MiniBatchKMeans
from skimage.io import imread
from skimage.color import rgb2lab
from sklearn.externals import joblib
import pickle
import utility
import numpy as np
from sklearn.utils.random import sample_without_replacement
from sklearn.model_selection import train_test_split
args = utility.get_parser().parse_args()
DATASET = args.data
NUM_PIXELS = args.num_pixels
SINGLE_CLUSTERS = args.single_clusters
DOUBLE_CLUSTERS = args.double_clusters
image_paths, _ = utility.read_data(DATASET)
image_paths, _ = train_test_split(image_paths, test_size = 1500, random_state = 42)
single_data = np.zeros((SINGLE_CLUSTERS, 1))
double_data = np.zeros((DOUBLE_CLUSTERS, 1))
prep = utility.PrepareOutputPCA((12, 12), 'resources/clusters_pca_single_'+str(SINGLE_CLUSTERS)+'.npy', 'resources/clusters_pca_double_'+str(DOUBLE_CLUSTERS)+'.npy')
for i, img in enumerate(image_paths):
#print(i)
image = imread(img)
img, out = prep(image)
for j in range(12):
for k in range(12):
single_data[out[j, k, 0]] += 1
double_data[out[j, k, 1]] += 1
print (single_data)
print (double_data)
with open('counts/clusters_pca_single_'+str(SINGLE_CLUSTERS)+'.npy', 'wb') as f:
np.savez(f, single_data)
with open('counts/clusters_pca_double_'+str(DOUBLE_CLUSTERS)+'.npy', 'wb') as f:
np.savez(f, double_data)