forked from ErasmusMC-NeuroOnco/DeepDicomSort
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_CNN.py
executable file
·90 lines (63 loc) · 3.19 KB
/
train_CNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import tensorflow as tf
from tensorflow.keras.callbacks import TensorBoard, ReduceLROnPlateau, EarlyStopping
import numpy as np
import yaml
import Tools.data_IO as data_IO
import CNN_model.CNN_models as models
import os
import datetime
with open('./config.yaml', 'r') as ymlfile:
cfg = yaml.load(ymlfile)
train_label_file = cfg['training']['train_label_file']
x_image_size = cfg['data_preparation']['image_size_x']
y_image_size = cfg['data_preparation']['image_size_y']
output_folder = cfg['training']['output_folder']
batch_size = cfg['network']['batch_size']
nb_epoch = cfg['network']['nb_epoch']
now = str(datetime.datetime.now()).replace(' ', '_')
model_name = 'DDS_model_epochs' + str(nb_epoch) + '_time_' + now
def get_one_hot(targets, nb_classes):
res = np.eye(nb_classes)[np.array(targets).reshape(-1)]
return res.reshape(list(targets.shape)+[nb_classes])
def load_labels(label_file):
labels = np.genfromtxt(label_file, dtype='str')
label_IDs = labels[:, 0]
label_IDs = np.asarray(label_IDs)
label_values = labels[:, 1].astype(np.int)
extra_inputs = labels[:, 2:].astype(np.float)
np.round(extra_inputs, 2)
N_classes = len(np.unique(label_values))
# Make sure that minimum of labels is 0
label_values = label_values - np.min(label_values)
one_hot_labels = get_one_hot(label_values, N_classes)
return label_IDs, one_hot_labels, N_classes, extra_inputs
train_image_IDs, train_image_labels, N_train_classes, extra_inputs = load_labels(train_label_file)
print("Detected %d classes in training data" % N_train_classes)
print(extra_inputs)
NiftiGenerator_train = data_IO.NiftiGenerator2D_ExtraInput(batch_size,
train_image_IDs,
train_image_labels,
[x_image_size, y_image_size],
extra_inputs)
steps_per_epoch = int(np.floor(len(train_image_IDs)/float(batch_size)))
print("%d steps per epoch" % steps_per_epoch)
optimizer = tf.keras.optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-7, decay=0.0, amsgrad=False)
lr_callback = ReduceLROnPlateau(monitor='loss', factor=0.1, patience=3, min_lr=0.000001, verbose=1)
stopping_callback = EarlyStopping(monitor='loss', patience=6, verbose=1)
model_args = {'img_rows': x_image_size, 'img_cols': y_image_size, 'img_channels': 1}
model = models.DDS_model(**model_args)
tensorboard_log_dir = os.path.join(output_folder, 'tensorboard', model_name)
if not os.path.exists(tensorboard_log_dir):
os.makedirs(tensorboard_log_dir)
tensorboard_log = TensorBoard(log_dir=tensorboard_log_dir)
callbacks = [tensorboard_log, lr_callback, stopping_callback]
model.compile(loss='categorical_crossentropy',
optimizer=optimizer,
metrics=['categorical_accuracy'])
model.fit_generator(NiftiGenerator_train,
epochs=nb_epoch,
steps_per_epoch=steps_per_epoch,
callbacks=callbacks,
use_multiprocessing=False,
workers=4)
model.save(os.path.join(output_folder, model_name + '.hdf5'))