-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathflow.py
89 lines (78 loc) · 2.79 KB
/
flow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import cv2
import numpy as np
from datetime import timedelta
import time
from scipy.spatial import distance as dist
# video to capture
cap = cv2.VideoCapture("P1170013.MP4")
# Lucas kanade params
lk_params = dict(winSize = (15, 15),
maxLevel = 4,
criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))
# GLOBAL VARIABLE
point_selected = 0
point = ()
old_points = np.array([[]])
# Calculate the distance between 2 points based on the reference distrance of the markers on the board
def distance(x1, y1, x2, y2):
refDist = 128.249756335
#print(dist.euclidean((x1,y1), (x2,y2))/refDist)
return dist.euclidean((x1,y1), (x2,y2))/refDist
# Mouse function
def select_point(event, x, y, flags, params):
global point, point_selected, old_points, frame
if event == cv2.EVENT_LBUTTONDOWN:
if not point_selected:
point = (x, y)
old_points = np.array([[x, y]], dtype=np.float32)
point_selected = True
else:
new = np.array([[x, y]], dtype=np.float32)
points = np.append(old_points, new, axis=0)
old_points = points
print(frame[y][x])
cv2.namedWindow("Frame")
cv2.setMouseCallback("Frame", select_point)
color = np.random.randint(0,255,(100,3))
# Create old frame
_, frame = cap.read()
old_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
mask = np.zeros_like(frame)
lowest_point = 0
start = None
THRESH = 50
while True:
_, frame = cap.read()
if frame is None:
break
gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
if point_selected is True:
# cv2.circle(frame, point, 5, (0, 0, 255), 2)
new_points, status, error = cv2.calcOpticalFlowPyrLK(old_gray, gray_frame, old_points, None, **lk_params)
old_gray = gray_frame.copy()
# x, y = new_points.ravel()
# cv2.circle(frame, (x, y), 5, (0, 255, 0), -1)
for i,(new,old) in enumerate(zip(new_points,old_points)):
a,b = new.ravel()
if start is None:
start = a
c,d = old.ravel()
mask = cv2.line(mask, (a,b),(c,d), color[i].tolist(), 2)
frame = cv2.circle(frame,(a,b),5,color[i].tolist(),-1)
if b > lowest_point and abs(a - start) <= THRESH:
# print('ms:', timedelta(milliseconds=cap.get(cv2.CAP_PROP_POS_MSEC)))
low = np.zeros_like(frame)
low = cv2.circle(low, (a,b), 5, color[i+1].tolist(), -1)
lowest_point = b
img = cv2.add(frame,mask) # essey
img = cv2.add(img, low)
cv2.imshow('Frame',img)
old_points = new_points.reshape(-1,2)
else:
cv2.imshow("Frame", frame)
key = cv2.waitKey(1)
if key == 27:
break
cap.release()
cv2.destroyAllWindows()
exit()