-
Notifications
You must be signed in to change notification settings - Fork 56
/
Copy pathtest.py
59 lines (44 loc) · 1.58 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import numpy as np
import cv2
import imutils
import sys
import pytesseract
import pandas as pd
import time
image = cv2.imread('car.jpeg')
image = imutils.resize(image, width=500)
cv2.imshow("Original Image", image)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
#cv2.imshow("1 - Grayscale Conversion", gray)
gray = cv2.bilateralFilter(gray, 11, 17, 17)
#cv2.imshow("2 - Bilateral Filter", gray)
edged = cv2.Canny(gray, 170, 200)
#cv2.imshow("4 - Canny Edges", edged)
(new, cnts, _) = cv2.findContours(edged.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
cnts=sorted(cnts, key = cv2.contourArea, reverse = True)[:30]
NumberPlateCnt = None
count = 0
for c in cnts:
peri = cv2.arcLength(c, True)
approx = cv2.approxPolyDP(c, 0.02 * peri, True)
if len(approx) == 4:
NumberPlateCnt = approx
break
# Masking the part other than the number plate
mask = np.zeros(gray.shape,np.uint8)
new_image = cv2.drawContours(mask,[NumberPlateCnt],0,255,-1)
new_image = cv2.bitwise_and(image,image,mask=mask)
cv2.namedWindow("Final_image",cv2.WINDOW_NORMAL)
cv2.imshow("Final_image",new_image)
# Configuration for tesseract
config = ('-l eng --oem 1 --psm 3')
# Run tesseract OCR on image
text = pytesseract.image_to_string(new_image, config=config)
#Data is stored in CSV file
raw_data = {'date': [time.asctime( time.localtime(time.time()) )],
'v_number': [text]}
df = pd.DataFrame(raw_data, columns = ['date', 'v_number'])
df.to_csv('data.csv')
# Print recognized text
print(text)
cv2.waitKey(0)