This repository has been archived by the owner on Dec 27, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathsplit_dataset.py
120 lines (110 loc) · 4.67 KB
/
split_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import argparse
import multiprocessing
from pathlib import Path
import dgl
import joblib as J
import numpy as np
import pandas as pd
def extract_stats(file: str):
file = Path(file)
if not file.exists():
raise ValueError(f"{file} doesn't exist")
result = {}
graphs, labels = dgl.data.utils.load_graphs(str(file))
graph: dgl.DGLGraph = graphs[0]
result['label'] = 'Benign' if 'Benig' in file.stem else 'Malware'
result['file_name'] = str(file)
result['num_nodes'] = graph.num_nodes()
result['num_edges'] = graph.num_edges()
return result
def save_list(dataframe, file_name):
with open(file_name, 'a') as target:
for file in dataframe['file_name']:
target.writelines(f'{file.split(".")[0]}\n')
def get_dataset(df: pd.DataFrame, test_ratio: float, log_dir: Path):
assert 0 <= test_ratio < 1, "Ratio must be within 0 and 1"
q1 = df['num_nodes'].quantile(0.25)
q3 = df['num_nodes'].quantile(0.75)
iqr = q3 - q1
print(f"Initial range {df['num_nodes'].min(), df['num_nodes'].max()}")
print(f"IQR num_nodes = {iqr}")
df = df.query(f'{q1 - iqr} <= num_nodes <= {q3 + iqr}')
print(f"Final range {df['num_nodes'].min(), df['num_nodes'].max()}")
bins = np.arange(0, df['num_nodes'].max(), 500)
ben_hist, _ = np.histogram(df.query('label == "Benign"')['num_nodes'], bins=bins)
mal_hist, _ = np.histogram(df.query('label != "Benign"')['num_nodes'], bins=bins)
combined = np.concatenate([ben_hist[:, np.newaxis], mal_hist[:, np.newaxis]], axis=1)
np.savetxt(
log_dir / 'histogram.list',
combined
)
final_sizes = [(x, x) for x in np.min(combined, axis=1)]
final_train = []
final_test = []
for i, (ben_size, mal_size) in enumerate(final_sizes):
low, high = bins[i], bins[i + 1]
benign_samples = df.query(f'label == "Benign" and {low} <= num_nodes < {high}')
malware_samples = df.query(f'label == "Malware" and {low} <= num_nodes < {high}')
assert len(benign_samples) >= ben_size and len(malware_samples) >= mal_size, "Mismatch"
benign_samples = benign_samples.sample(ben_size)
malware_samples = malware_samples.sample(mal_size)
if test_ratio > 0:
benign_samples, benign_test_samples = np.split(benign_samples,
[round((1 - test_ratio) * len(benign_samples))])
malware_samples, malware_test_samples = np.split(malware_samples,
[round((1 - test_ratio) * len(malware_samples))])
final_test.append(benign_test_samples)
final_test.append(malware_test_samples)
final_train.append(benign_samples)
final_train.append(malware_samples)
final_train = pd.concat(final_train)
if final_test:
final_test = pd.concat(final_test)
return final_train, final_test
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description='Split the input dataset into train and test partitions (80%, 20%) based on bin equalization'
)
parser.add_argument(
'-i', '--input-dirs',
help="List of input paths",
nargs='+',
required=True
)
parser.add_argument(
'-o', '--output-dir',
help="The path to write the result lists to",
required=True
)
parser.add_argument(
'-s', '--strict',
help="If set, program will terminate on error while in loop",
action='store_true',
default=False
)
args = parser.parse_args()
output_dir = Path(args.output_dir)
if not output_dir.exists():
output_dir.mkdir(parents=True)
input_stats = []
for input_dir in args.input_dirs:
input_dir = Path(input_dir)
if not input_dir.exists():
if args.strict:
raise FileNotFoundError(f"{input_dir} does not exist. Halting")
else:
print(f"{input_dir} does not exist. Skipping...")
continue
stats = J.Parallel(n_jobs=multiprocessing.cpu_count())(
J.delayed(extract_stats)(x) for x in input_dir.glob("*.fcg")
)
input_stats.append(pd.DataFrame.from_records(stats))
input_stats = pd.concat(input_stats)
zero_nodes = input_stats.query('num_nodes == 0')
if len(zero_nodes) > 0:
print(f"Warning: {len(zero_nodes)} APKs with num_nodes = 0 found. Writing their names to zero_nodes.list")
save_list(zero_nodes, 'zero_nodes.list')
input_stats = input_stats.query('num_nodes != 0')
train_list, test_list = get_dataset(input_stats, 0.2, output_dir)
save_list(train_list, 'train.list')
save_list(test_list, 'test.list')