-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathkmeans_test.cpp
192 lines (177 loc) · 4.56 KB
/
kmeans_test.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
#include "comm_def_col.h"
#define K 5
#define TH 0.02 //阈值
#define SAMPLE_NUM 100 //样本数量
#define HEIGHT 512
#define WIDTH 512
#define RANDOM_X (rand() % WIDTH) //通过取余取得指定范围的随机数
#define RANDOM_Y (rand() % HEIGHT) //通过取余取得指定范围的随机数
#define RANDOM_COLOR (rand() % 255)
typedef struct _feature
{
double x; //特征x
double y; //特征y
} FEATURE;
typedef struct _sample
{
FEATURE feature;
int cluster; //所属的类
} SAMPLE;
typedef struct _cluster
{
FEATURE center;
FEATURE pre_center;
int count; //样本个数
} CLUSTER;
typedef struct _color
{
unsigned char val[3];
} COLOR;
static CLUSTER c[K];
static COLOR color[K];
static SAMPLE s[SAMPLE_NUM];
static IplImage *p_image = NULL;
static double dist(FEATURE f1, FEATURE f2)
{
double x = f1.x - f2.x;
double y = f1.y - f2.y;
return static_cast<double>(sqrt(x * x + y * y));
}
static void update_center()
{
double x[K],y[K];
memset(x,0,sizeof(x));
memset(y,0,sizeof(y));
for(int i = 0; i < SAMPLE_NUM; i++)
{
x[s[i].cluster] += s[i].feature.x;
y[s[i].cluster] += s[i].feature.y;
}
for(int i = 0; i < K; i++)
{
c[i].pre_center = c[i].center;
c[i].center.x = x[i] / c[i].count;
c[i].center.y = y[i] / c[i].count;
c[i].count = 0;
}
}
static bool good_result()
{
for(int i = 0; i < K; i++)
{
if(dist(c[i].center,c[i].pre_center) > TH)
return false;
}
return true;
}
static void show_outcome()
{
unsigned char *data = NULL;
for(int y = 0; y < HEIGHT; y++)//这里将平面中所有的点都标记,就可以看到平面是怎样被划分的了
{
data = (unsigned char *)(p_image->widthStep * y + p_image->imageData);
for(int x = 0; x < WIDTH; x++)
{
double min_dist = 1000;
int min_k = 0;
FEATURE f;
f.x = x;
f.y = y;
for(int i = 0; i < K; i++)
{
double tmp = dist(c[i].center, f);
if(tmp < min_dist)
{
min_dist = tmp;
min_k = i;
}
}
*(data + (x * p_image->nChannels + 0)) = color[min_k].val[0];
*(data + (x * p_image->nChannels + 1)) = color[min_k].val[1];
*(data + (x * p_image->nChannels + 2)) = color[min_k].val[2];
*(data + (x * p_image->nChannels + 3)) = 200;
// IMG_B(img,x,y) = color[min_k].val[0];
// IMG_G(img,x,y) = color[min_k].val[1];
// IMG_R(img,x,y) = color[min_k].val[2];
// IMG_A(img,x,y) = 200;//4通道图像,就是说可以是透明的,纯试验而已,哪知道直接显示没效果,要保存之后才能看出来。
}
}
CvScalar scalar = cvScalar(255,255,255,255);
for(int i = 0; i < SAMPLE_NUM; i++)//画每个样本点
{
int x = static_cast<int>(s[i].feature.x);
int y = static_cast<int>(s[i].feature.y);
cvLine(p_image,cvPoint(x - 5,y),cvPoint(x + 5,y),scalar,2);
cvLine(p_image,cvPoint(x,y - 5),cvPoint(x,y + 5),scalar,2);
}
for(int i = 0;i < K; i++)//画聚类中心
{
int x = static_cast<int>(c[i].center.x);
int y = static_cast<int>(c[i].center.y);
cvCircle(p_image, cvPoint(x,y), 10, scalar,2);
}
cvNamedWindow("Kmeans");
cvShowImage("Kmeans", p_image);
cvWaitKey(1000);//100毫秒是个差不多的数值,可以完整的看到聚类过程
cvDestroyWindow("Kmeans");
}
static void init()
{
srand(time(NULL));
for (int i = 0; i < SAMPLE_NUM; i++) //随即生成样本
{
s[i].feature.x = RANDOM_X;
if (s[i].feature.x < 6)
s[i].feature.x = 6;
if (s[i].feature.x > 507)
s[i].feature.x = 507;
s[i].feature.y = RANDOM_Y;
if (s[i].feature.y < 6)
s[i].feature.y = 6;
if (s[i].feature.y > 507)
s[i].feature.y = 507;
}
for (int i = 0; i < K; i++) //初始化类的中心和类的颜色
{
c[i].center = s[i].feature;
c[i].pre_center = s[i].feature;
c[i].pre_center.x += (20 * TH);
c[i].pre_center.y += (20 * TH);
c[i].count = 0;
color[i].val[0] = (unsigned char)RANDOM_COLOR;
color[i].val[1] = (unsigned char)RANDOM_COLOR;
color[i].val[2] = (unsigned char)RANDOM_COLOR;
}
}
int kmeans_test()
{
int iter_times = 0;//迭代次数
init();//全局数据初始化
p_image = cvCreateImage(cvSize(WIDTH, HEIGHT), IPL_DEPTH_8U, 4);
cvSetZero(p_image);
while(!good_result())//检查是否是需要的聚类中心
{
for(int i = 0; i < SAMPLE_NUM; i++)
{
double min_dist = 10000;
int min_k = 0;
for(int j = 0; j < K; j++)
{
double tmp = dist(c[j].center, s[i].feature);
if(tmp < min_dist)
{
min_dist = tmp;
min_k = j;
}
}
s[i].cluster = min_k;//确定样本所属的新类
c[min_k].count++;//更新该类中样本的个数
}
update_center();//更新聚类中心
iter_times++;
show_outcome();
}
cvReleaseImage(&p_image);
cvWaitKey();
return 0;
}