The easiest way to use software on the VSC, is to use the pre-installed software, that is installed as an Easy Build module. Alternatively, you could create your own conda/mamba environment and use it in a python script or a jupyter notebook. More advanced ways to user/run software are: - using singularity containers
- running nextflow workflow
Not all software are relying on GPU.
- CPU software: Fiji, QuPath
- GPU software: Cellpose, Omnipose, Napari and its plugins, Ilastik, ...
- See loaded modules
ml
module list
- See available modules
module avail
- Search for a module X
module av |& grep -i X
- Search for a module X and get details
module spider X
- Load a module X
module load x
- Unload a module X
module unload x
- Swap a module Y to X
module swap Y X
- Remove all loaded modules except the cluster one
module purge
🗎 https://docs.vscentrum.be/software/software_stack.html#using-the-module-system
Select the appropriate version of the jupyter notebook and load the easy build module accordingly
i.e. 6.4.0 GCC core 11.3.0 IPython 8.5.0 is compatible with foss-2022a or intel 2022a modules (see compatibility table below)
FOSS | GCC | CUDA | OpenMPI | OpenBLAS | FFTW | ScaLAPACK |
---|---|---|---|---|---|---|
2022b | 12.2.0 | 12.0.0 | 4.1.4 | 0.3.21 | 3.3.10 | 2.2.0-fb |
2022a | 11.3.0 | 11.7.0 | 4.1.4 | 0.3.20 | 3.3.10 | 2.2.0-fb |
2021b | 11.2.0 | - | 4.1.1 | 0.3.18 | 3.3.10 | 2.1.0-fb |
2021a | 10.3.0 | - | 4.1.1 | 0.3.15 | 3.3.9 | 2.1.0-fb |
2020b | 10.2.0 | - | 4.0.5 | 0.3.12 | 3.3.8 | 2.1.0 |
2020a | 9.3.0 | - | 4.0.3 | 0.3.9 | 3.3.8 | 2.1.9 |
2019b | 8.3.0 | - | 3.1.4 | 0.3.7 | 3.3.8 | 2.0.2 |
For more information about modules: https://hprc.tamu.edu/kb/Software/GNU-Compiler-Collection/
Table for jupyter notebook
IPython version | Python | GCCcore |
---|---|---|
7.25.0-GCCcore-10.3.0 | Python 3.9.5 | GCCcore-10.3.0 |
6.4.0-GCCcore-11.2.0 | Python 3.9.6 | GCCcore-11.2.0 |
8.5.0-GCCcore-11.3.0 | Python 3.10.4 | GCCcore-11.3.0 |
7.0.3 GCCcore 12.2.0 | Python 3.10.8 | GCCcore 12.2.0 |
7.0.2 GCCcore 12.3.0 | Python 3.11.3 | GCCcore 12.3.0 |
How to see what is loaded with the module:
ml show IPython/8.5.0-GCCcore-11.3.0
- Napari: Napari/0.4.15-foss-2021b or Napari/0.4.18-foss-2022a
- Cellpose: Cellpose/2.2.2-foss-2022a or Cellpose/2.2.2-foss-2022a-CUDA-11.7.0
- Omnipose: Omnipose/0.4.4-foss-2022a-CUDA-11.7.0 or Omnipose/0.4.4-foss-2022a
- stardist: stardist/0.8.3-foss-2021b-CUDA-11.4.1 or stardist/0.8.3-foss-2021b
- AICSImageIO : AICSImageIO/4.14.0-foss-2022a
- devbio-napari : devbio-napari/0.10.1-foss-2022a-CUDA-11.7.0
- n2v : n2v/0.3.2-foss-2022a-CUDA-11.7.0
- Monai: MONAI/1.0.1-foss-2022a
- QuPath: QuPath/0.5.0-GCCcore-12.3.0-Java-17
- Scanpy: scanpy/1.9.1-foss-2021b
- Seurat: Seurat/4.3.0-foss-2021b-R-4.1.2
- Squidpy: Squidpy/1.2.2-foss-2021b
- Giotto: Giotto-Suite/3.0.1-foss-2022a-R-4.2.1
- Fiji: Fiji/2.9.0-Java-1.8
- Cellprofiler: CellProfiler/4.2.4-foss-2021a
- Scikit-learn: scikit-learn/1.1.2-foss-2022a or scikit-learn/1.0.1-foss-2021b
- Scikit-image: scikit-image/0.19.3-foss-2022a or scikit-image/0.19.1-foss-2021b
- scipy: SciPy-bundle/2022.05-foss-2022a, SciPy-bundle/2021.10-foss-2021b
- seaborn: Seaborn/0.11.2-foss-2021b
- tifftile: Scikit-image/0.19.1-foss-2021b
- tensorflow: TensorFlow/2.7.1-foss-2021b-CUDA-11.4.1 or TensorFlow/2.7.1-foss-2021b
- R : R/4.2.1-foss-2022a or R/4.0.0-foss-2020a
- R studio: RStudio-Server/1.3.959-foss-2020a-Java-11-R-4.0.0
- Jupyter notebook: JupyterLab/3.1.6-GCCcore-11.2.0
- Matplotlib: matplotlib/3.5.2-foss-2022a or matplotlib/3.4.3-intel-2021b
- Bioconductor: R-bundle-Bioconductor/3.14-foss-2021b-R-4.1.2
- Connect to Tier2 via ondemand (or to Tier2 Ghent)
- Open an
Interactive Shell
- Go to the $VSC_DATA location and install miniconda
cd $VSC_DATA
wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh
bash Miniconda3-latest-Linux-x86_64.sh -b -p $VSC_DATA/miniconda3
-Make conda available to the path:
export PATH="${VSC_DATA}/miniconda3/bin:${PATH}"
mamba is a reimplementation of the conda package manager in C++. It allows parallel downloading of repository data and package files using multi-threading and use libsolv for much faster dependency solving
cd $VSC_DATA
wget "https://github.com/conda-forge/miniforge/releases/latest/download/Mambaforge-$(uname)-$(uname -m).sh"
bash Mambaforge-$(uname)-$(uname -m).sh
export PATH="${VSC_DATA}/mambaforge/bin:${PATH}"
- Create the conda environment from the yaml file
conda env create -f cellpose-omnipose-gpu.yml
or
mamba env create -f cellpose-omnipose-gpu.yml
- Make it available for the jupyter notebook
source activate cellpose-omnipose-gpu
export PATH="${VSC_DATA}/miniconda3/bin:${PATH}
conda install ipykernel
python -m ipykernel install --prefix=${VSC_HOME}/.local/ --name 'cellpose'
In this example, the conda envirmnemnt will be accessible under the name cellpose