-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot-pr.R
executable file
·175 lines (152 loc) · 7.19 KB
/
plot-pr.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
#!/usr/bin/env Rscript
# plot-pr.R <stats TSV> <destination image file> [<comma-separated "aligner" names to include> [title]]
# Install required packages
list.of.packages <- c("tidyverse", "ggrepel", "svglite")
new.packages <- list.of.packages[!(list.of.packages %in% installed.packages()[,"Package"])]
if(length(new.packages)) install.packages(new.packages)
require("tidyverse")
require("ggrepel")
# Read in the combined toil-vg stats.tsv, listing:
# correct, mapq, aligner (really graph name), read name, count, eligible
dat <- read.table(commandArgs(TRUE)[1], header=T, colClasses=c("aligner"="factor"))
if (("eligible" %in% names(dat))) {
# If the eligible column is present, remove ineligible reads
dat <- dat[dat$eligible == 1, ]
}
if (! ("count" %in% names(dat))) {
# If the count column is not present, add it
dat$count <- rep(1, nrow(dat))
}
if (length(commandArgs(TRUE)) > 2) {
# A set of aligners to plot is specified. Parse it.
aligner.set <- unlist(strsplit(commandArgs(TRUE)[3], ","))
# Subset the data to those aligners
dat <- dat[dat$aligner %in% aligner.set,]
# And restrict the aligner factor levels to just the ones in the set
dat$aligner <- factor(dat$aligner, levels=aligner.set)
}
# Determine title
title <- ''
if (length(commandArgs(TRUE)) > 3) {
title <- commandArgs(TRUE)[4]
}
# Determine the order of aligners, based on sorting in a dash-separated tag aware manner
aligner.names <- levels(dat$aligner)
name.lists <- aligner.names %>% (function(name) map(name, (function(x) as.list(unlist(strsplit(x, "-"))))))
# Transpose name fragments into a list of vectors for each position, with NAs when tag lists end early
max.parts <- max(sapply(name.lists, length))
name.cols <- list()
for (i in 1:max.parts) {
name.cols[[i]] <- sapply(name.lists, function(x) if (length(x) >= i) { x[[i]] } else { NA })
}
name.order <- do.call(order,name.cols)
aligner.names <- aligner.names[name.order]
dat$aligner <- factor(dat$aligner, levels=aligner.names)
name.lists <- name.lists[name.order]
# Determine colors for aligners
bold.colors <- c("#1f78b4","#e31a1c","#33a02c","#6600cc","#ff8000","#5c415d","#458b74","#698b22","#008b8b","#6caed1")
light.colors <- c("#a6cee3","#fb9a99","#b2df8a","#e5ccff","#ffe5cc","#9a7c9b","#76eec6","#b3ee3a","#00eeee","#b9d9e9")
# We have to go through both lists together when assigning colors, because pe and non-pe versions of a condition need corresponding colors.
cursor <- 1
# This will map from non-pe condition name string to color index.
colors <- c()
for (i in 1:length(name.lists)) {
# For each name
name.parts <- unlist(name.lists[[i]])
if (name.parts[length(name.parts)] == "pe") {
# Drop the pe tag if present
name.parts <- name.parts[-c(length(name.parts))]
}
if (name.parts[length(name.parts)] == "se") {
# Drop the se tag if present
name.parts <- name.parts[-c(length(name.parts))]
}
# Join up to a string again
name <- paste(name.parts, collapse='-')
if (! name %in% names(colors)) {
# No colors assigned for this pair of conditions, so assign them.
if (cursor > length(bold.colors)) {
write(colors, stderr())
write(aligner.names, stderr())
stop('Ran out of colors! Too many conditions!')
}
# We always assign pe and non-pe colors in lockstep, whichever we see first.
# We need two entries for -se and no tag which are the same.
new.colors <- c(bold.colors[cursor], light.colors[cursor], light.colors[cursor])
names(new.colors) <- c(paste(name, 'pe', sep='-'), paste(name, 'se', sep='-'), name)
colors <- c(colors, new.colors)
cursor <- cursor + 1
}
}
# Make colors a vector in the same order as the actually-used aligner names
colors <- colors[aligner.names]
# Add a bin "factor" to each row, binning float MAPQs into bins from 0 to 60 (and inclusing bins for out of range on each end)
dat$bin <- cut(dat$mq, c(-Inf,seq(0,60,1),Inf))
# We need to work out our scales
reads.per.condition <- sum(dat$count) / length(aligner.names)
# Start with small scale
labels <- c("1e-0","1e-1","1e-2","1e-3","1e-4")
breaks <- c(0,1,2,3,4)
limits <- c(0, 4)
if ( reads.per.condition > 10000 ) {
# Use big scale if there are a lot of reads
labels <- c(labels, "1e-5","1e-6")
breaks <- c(breaks, 5,6)
limits <- c(0, 6)
}
if ( reads.per.condition > 1000000 ) {
# Use big scale if there are a lot of reads
labels <- c(labels, "1e-7","1e-8","1e-9")
breaks <- c(breaks, 7,8,9)
limits <- c(0, 9)
}
# Now we break out the cool dplyr/magrittr/tidyverse tools like %>% pipe operators.
dat.roc <- dat %>%
# Make positive and negative count columns
mutate(Positive = (correct == 1) * count, Negative = (correct == 0) * count) %>%
# Arrange into a grouped_tbl by mapping quality bin
group_by(aligner, mq) %>%
# For each group, produce a row with the defining mq, total Positive reads, and total Negative reads in each bin.
# Note that these are not cumulative sums.
summarise(Positive = sum(Positive), Negative = sum(Negative)) %>%
# Sort in decreasing MAPQ order
arrange(-mq) %>%
# Define the parts of the confusion matrix that can really exist, at each MAPQ.
# Based on cumulative sums of all positive and negative reads in bins of that MAPQ or higher.
mutate(TP = cumsum(Positive), FP = cumsum(Negative), FN = sum(Positive+Negative) - cumsum(Positive)) %>%
# Given the confusion matrix entries, calculate Precision and Recall for each MAPQ
mutate(Precision = TP / (TP + FP), Recall = TP / (TP + FN));
# Keep only the rows that don't have NANs
# See <https://stackoverflow.com/a/5961999>
dat.roc <- dat.roc[complete.cases(dat.roc), ]
# Now we pipe that into ggplot and use + to assemble a bunch of ggplot layers together into a plot.
dat.plot <- dat.roc %>%
# Make a base plot mapping each of these variable names to each of these "aesthetic" attributes (like x position and color)
ggplot(aes(x = -log10(1 - Recall), y = -log10(1 - Precision), color = aligner, label=mq)) +
# We will use a line plot
geom_line() +
# There will be cool floating labels
geom_text_repel(data = subset(dat.roc, mq %% 60 == 0), size=3.5, point.padding=unit(0.7, "lines"), segment.alpha=I(1/2.5)) +
# There will be points with variable sizes
geom_point(aes(size=Positive+Negative)) +
# We manually assign these selected colors
scale_color_manual(values=colors, guide=guide_legend(title=NULL, ncol=1)) +
# And we want a size legend
scale_size_continuous("number", guide=guide_legend(title=NULL, ncol=4)) +
# And we want a fake log Y axis
scale_y_continuous(labels=labels, breaks=breaks, limits=limits) +
# Label it
ylab("1 - Precision") +
# And we want a fake log X axis
scale_x_continuous(labels=labels, breaks=breaks, limits=limits) +
# Label it
xlab("1 - Recall") +
# And we want this cool theme
theme_bw()
if (title != '') {
# And a title
dat.plot + ggtitle(title)
}
# Now save to the second command line argument
filename <- commandArgs(TRUE)[2]
ggsave(filename, height=4, width=7)