This is a set of scripts/installs to back up our presentation at:
For any questions, please register at the Vespa Slack and discuss in the general channel.
Install Ollama and run models like:
ollama run llama3.1
Use the quick start or Vespa getting started to deploy this - laptop example:
podman run --detach --name vespa --hostname vespa-container \
--publish 127.0.0.1:8080:8080 --publish 127.0.0.1:19071:19071 \
vespaengine/vespa
vespa deploy app --wait 600
Use e.g. podman or docker to run the vespaengine/vespa
image on a laptop.
feed_examples.py converts the train data set to vespa feed format - feed this to the Vespa instance:
python3 feed_examples.py > samples.jsonl
vespa feed samples.jsonl
categorize_group.py runs through the test set and classifies based on examples retrieved from Vespa.
See the inference
function for how to set up queries and ranking profiles for the different options.
Example script output:
category size relevance retrieved_label predicted_label label_text text
3 10 13.75663952228003 get_physical_card get_physical_card card_arrival How do I locate my card?
0 10 19.146904249529296 card_arrival card_arrival card_arrival I still have not received my new card, I ordered over a week ago.
Use the @timer_decorator
to time execution time of the functions.