-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtemplate.py
173 lines (148 loc) · 4.79 KB
/
template.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import os
import shutil
def create_project_structure():
# Define the project structure
project_structure = {
'neural_music_producer': {
'video_analysis': {
'__init__.py': '',
'emotion_analyzer.py': '''
from transformers import AutoFeatureExtractor, AutoModelForVideoClassification
import torch
import torch.nn as nn
class VideoEmotionAnalyzer(nn.Module):
def __init__(self):
super().__init__()
# Initialize emotion analysis components
self.feature_extractor = AutoFeatureExtractor.from_pretrained("microsoft/vivit-b-16-224")
self.model = AutoModelForVideoClassification.from_pretrained("microsoft/vivit-b-16-224")
def forward(self, frames):
# Process video frames and extract emotions
pass
''',
'frame_extractor.py': '''
import cv2
import numpy as np
from moviepy.editor import VideoFileClip
def extract_frames(video_path, fps=5):
"""Extract frames from video at specified fps"""
video = VideoFileClip(video_path)
frames = []
for t in np.arange(0, video.duration, 1/fps):
frame = video.get_frame(t)
frames.append(frame)
return np.array(frames)
'''
},
'music_generation': {
'__init__.py': '',
'generator.py': '''
import torch
import torch.nn as nn
class MusicGenerator(nn.Module):
def __init__(self):
super().__init__()
self.hidden_size = 512
# Initialize music generation components
def forward(self, emotion_embedding):
# Generate music based on emotion embedding
pass
''',
'audio_synthesis.py': '''
import librosa
import numpy as np
import soundfile as sf
class AudioSynthesizer:
def __init__(self):
self.sample_rate = 44100
def synthesize(self, music_sequence):
# Convert music sequence to audio
pass
'''
},
'utils': {
'__init__.py': '',
'preprocessing.py': '''
import torch
import numpy as np
def normalize_video_frames(frames):
"""Normalize video frames for model input"""
return frames / 255.0
def prepare_audio_features(audio):
"""Prepare audio features for synthesis"""
pass
'''
},
'ui': {
'__init__.py': '',
'streamlit_app.py': '''
import streamlit as st
from neural_music_producer.video_analysis.emotion_analyzer import VideoEmotionAnalyzer
from neural_music_producer.music_generation.generator import MusicGenerator
def main():
st.title("Neural Music Producer")
# File uploader
video_file = st.file_uploader("Upload your video", type=['mp4', 'mov'])
if video_file:
# Process video and generate music
pass
if __name__ == "__main__":
main()
'''
},
'__init__.py': ''
}
}
def create_directories_and_files(base_path, structure):
for name, content in structure.items():
path = os.path.join(base_path, name)
if isinstance(content, dict):
# If it's a dictionary, it's a directory
os.makedirs(path, exist_ok=True)
create_directories_and_files(path, content)
else:
# If it's not a dictionary, it's a file
with open(path, 'w') as f:
f.write(content)
# Create the project structure
base_dir = os.getcwd()
project_dir = os.path.join(base_dir, 'neural_music_producer_project')
# Remove existing directory if it exists
if os.path.exists(project_dir):
shutil.rmtree(project_dir)
# Create new project structure
os.makedirs(project_dir)
# Create setup.py
setup_py_content = '''
from setuptools import setup, find_packages
setup(
name="neural_music_producer",
version="0.1.0",
packages=find_packages(),
install_requires=[
"torch>=2.0.0",
"torchvision>=0.15.0",
"transformers>=4.30.0",
"librosa>=0.10.0",
"moviepy>=1.0.3",
"numpy>=1.24.0",
"streamlit>=1.25.0",
"opencv-python>=4.8.0",
"tqdm>=4.65.0",
"soundfile>=0.12.1",
"python-dotenv>=1.0.0",
],
author="Your Name",
author_email="[email protected]",
description="An AI system that generates custom music for videos",
keywords="ai, music generation, computer vision, deep learning",
python_requires=">=3.8",
)
'''
with open(os.path.join(project_dir, 'setup.py'), 'w') as f:
f.write(setup_py_content)
# Create project structure
create_directories_and_files(project_dir, project_structure)
print(f"Project structure created at: {project_dir}")
if __name__ == "__main__":
create_project_structure()