From c7aef53559a5aafcc4c69aa0cc415c1965e0cf23 Mon Sep 17 00:00:00 2001 From: Matthias Koeppe Date: Fri, 10 Nov 2023 13:48:46 -0800 Subject: [PATCH 1/3] src/sage/calculus/all.py: Move 'symbolic_expression' to new module .expr --- src/doc/en/reference/calculus/index.rst | 1 + src/sage/calculus/all.py | 203 +---------------------- src/sage/calculus/expr.py | 204 ++++++++++++++++++++++++ 3 files changed, 207 insertions(+), 201 deletions(-) create mode 100644 src/sage/calculus/expr.py diff --git a/src/doc/en/reference/calculus/index.rst b/src/doc/en/reference/calculus/index.rst index c9a5158e522..89174c4a062 100644 --- a/src/doc/en/reference/calculus/index.rst +++ b/src/doc/en/reference/calculus/index.rst @@ -23,6 +23,7 @@ Using calculus - :doc:`More about symbolic variables and functions ` - :doc:`Main operations on symbolic expressions ` +- :doc:`sage/calculus/expr` - :doc:`Assumptions about symbols and functions ` - :doc:`sage/symbolic/relation` - :doc:`sage/symbolic/integration/integral` diff --git a/src/sage/calculus/all.py b/src/sage/calculus/all.py index c83a97f6eb4..fc7f54a6758 100644 --- a/src/sage/calculus/all.py +++ b/src/sage/calculus/all.py @@ -21,7 +21,8 @@ eulers_method_2x2_plot, desolve_rk4, desolve_system_rk4, desolve_odeint, desolve_mintides, desolve_tides_mpfr) -from .var import (var, function, clear_vars) +from sage.calculus.expr import symbolic_expression +from sage.calculus.var import (var, function, clear_vars) from .transforms.all import * @@ -30,204 +31,4 @@ lazy_import("sage.calculus.riemann", ["Riemann_Map"]) lazy_import("sage.calculus.interpolators", ["polygon_spline", "complex_cubic_spline"]) -from sage.modules.free_module_element import vector -from sage.matrix.constructor import matrix - - -def symbolic_expression(x): - """ - Create a symbolic expression or vector of symbolic expressions from x. - - INPUT: - - - ``x`` - an object - - OUTPUT: - - - a symbolic expression. - - EXAMPLES:: - - sage: a = symbolic_expression(3/2); a - 3/2 - sage: type(a) - - sage: R. = QQ[]; type(x) - - sage: a = symbolic_expression(2*x^2 + 3); a - 2*x^2 + 3 - sage: type(a) - - sage: from sage.structure.element import Expression - sage: isinstance(a, Expression) - True - sage: a in SR - True - sage: a.parent() - Symbolic Ring - - Note that equations exist in the symbolic ring:: - - sage: E = EllipticCurve('15a'); E - Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 10*x - 10 over Rational Field - sage: symbolic_expression(E) - x*y + y^2 + y == x^3 + x^2 - 10*x - 10 - sage: symbolic_expression(E) in SR - True - - If ``x`` is a list or tuple, create a vector of symbolic expressions:: - - sage: v = symbolic_expression([x,1]); v - (x, 1) - sage: v.base_ring() - Symbolic Ring - sage: v = symbolic_expression((x,1)); v - (x, 1) - sage: v.base_ring() - Symbolic Ring - sage: v = symbolic_expression((3,1)); v - (3, 1) - sage: v.base_ring() - Symbolic Ring - sage: E = EllipticCurve('15a'); E - Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 10*x - 10 over Rational Field - sage: v = symbolic_expression([E,E]); v - (x*y + y^2 + y == x^3 + x^2 - 10*x - 10, x*y + y^2 + y == x^3 + x^2 - 10*x - 10) - sage: v.base_ring() - Symbolic Ring - - Likewise, if ``x`` is a vector, create a vector of symbolic expressions:: - - sage: u = vector([1, 2, 3]) - sage: v = symbolic_expression(u); v - (1, 2, 3) - sage: v.parent() - Vector space of dimension 3 over Symbolic Ring - - If ``x`` is a list or tuple of lists/tuples/vectors, create a matrix of symbolic expressions:: - - sage: M = symbolic_expression([[1, x, x^2], (x, x^2, x^3), vector([x^2, x^3, x^4])]); M - [ 1 x x^2] - [ x x^2 x^3] - [x^2 x^3 x^4] - sage: M.parent() - Full MatrixSpace of 3 by 3 dense matrices over Symbolic Ring - - If ``x`` is a matrix, create a matrix of symbolic expressions:: - - sage: A = matrix([[1, 2, 3], [4, 5, 6]]) - sage: B = symbolic_expression(A); B - [1 2 3] - [4 5 6] - sage: B.parent() - Full MatrixSpace of 2 by 3 dense matrices over Symbolic Ring - - If ``x`` is a function, for example defined by a ``lambda`` expression, create a - symbolic function:: - - sage: f = symbolic_expression(lambda z: z^2 + 1); f - z |--> z^2 + 1 - sage: f.parent() - Callable function ring with argument z - sage: f(7) - 50 - - If ``x`` is a list or tuple of functions, or if ``x`` is a function that returns a list - or tuple, create a callable symbolic vector:: - - sage: symbolic_expression([lambda mu, nu: mu^2 + nu^2, lambda mu, nu: mu^2 - nu^2]) - (mu, nu) |--> (mu^2 + nu^2, mu^2 - nu^2) - sage: f = symbolic_expression(lambda uwu: [1, uwu, uwu^2]); f - uwu |--> (1, uwu, uwu^2) - sage: f.parent() - Vector space of dimension 3 over Callable function ring with argument uwu - sage: f(5) - (1, 5, 25) - sage: f(5).parent() - Vector space of dimension 3 over Symbolic Ring - - TESTS: - - Lists, tuples, and vectors of length 0 become vectors over a symbolic ring:: - - sage: symbolic_expression([]).parent() - Vector space of dimension 0 over Symbolic Ring - sage: symbolic_expression(()).parent() - Vector space of dimension 0 over Symbolic Ring - sage: symbolic_expression(vector(QQ, 0)).parent() - Vector space of dimension 0 over Symbolic Ring - - If a matrix has dimension 0, the result is still a matrix over a symbolic ring:: - - sage: symbolic_expression(matrix(QQ, 2, 0)).parent() - Full MatrixSpace of 2 by 0 dense matrices over Symbolic Ring - sage: symbolic_expression(matrix(QQ, 0, 3)).parent() - Full MatrixSpace of 0 by 3 dense matrices over Symbolic Ring - - Also functions defined using ``def`` can be used, but we do not advertise it as a use case:: - - sage: def sos(x, y): - ....: return x^2 + y^2 - sage: symbolic_expression(sos) - (x, y) |--> x^2 + y^2 - - Functions that take a varying number of arguments or keyword-only arguments are not accepted:: - - sage: def variadic(x, *y): - ....: return x - sage: symbolic_expression(variadic) - Traceback (most recent call last): - ... - TypeError: unable to convert to a symbolic expression - - sage: def function_with_keyword_only_arg(x, *, sign=1): - ....: return sign * x - sage: symbolic_expression(function_with_keyword_only_arg) - Traceback (most recent call last): - ... - TypeError: unable to convert - to a symbolic expression - """ - from sage.symbolic.expression import Expression - from sage.symbolic.ring import SR - from sage.modules.free_module_element import is_FreeModuleElement - from sage.structure.element import is_Matrix - - if isinstance(x, Expression): - return x - elif hasattr(x, '_symbolic_'): - return x._symbolic_(SR) - elif isinstance(x, (tuple, list)) or is_FreeModuleElement(x): - expressions = [symbolic_expression(item) for item in x] - if not expressions: - # Make sure it is symbolic also when length is 0 - return vector(SR, 0) - if is_FreeModuleElement(expressions[0]): - return matrix(expressions) - return vector(expressions) - elif is_Matrix(x): - if not x.nrows() or not x.ncols(): - # Make sure it is symbolic and of correct dimensions - # also when a matrix dimension is 0 - return matrix(SR, x.nrows(), x.ncols()) - rows = [symbolic_expression(row) for row in x.rows()] - return matrix(rows) - elif callable(x): - from inspect import signature, Parameter - try: - s = signature(x) - except ValueError: - pass - else: - if all(param.kind in (Parameter.POSITIONAL_ONLY, Parameter.POSITIONAL_OR_KEYWORD) - for param in s.parameters.values()): - vars = [SR.var(name) for name in s.parameters.keys()] - result = x(*vars) - if isinstance(result, (tuple, list)): - return vector(SR, result).function(*vars) - else: - return SR(result).function(*vars) - return SR(x) - - from . import desolvers diff --git a/src/sage/calculus/expr.py b/src/sage/calculus/expr.py new file mode 100644 index 00000000000..236b46a94d9 --- /dev/null +++ b/src/sage/calculus/expr.py @@ -0,0 +1,204 @@ +r""" +Constructor for symbolic expressions +""" + +from sage.misc.lazy_import import lazy_import + +lazy_import('sage.modules.free_module_element', ['vector', 'FreeModuleElement']) +lazy_import('sage.matrix.constructor', 'matrix') + + +def symbolic_expression(x): + """ + Create a symbolic expression or vector of symbolic expressions from x. + + INPUT: + + - ``x`` - an object + + OUTPUT: + + - a symbolic expression. + + EXAMPLES:: + + sage: a = symbolic_expression(3/2); a + 3/2 + sage: type(a) + + sage: R. = QQ[]; type(x) + + sage: a = symbolic_expression(2*x^2 + 3); a + 2*x^2 + 3 + sage: type(a) + + sage: from sage.structure.element import Expression + sage: isinstance(a, Expression) + True + sage: a in SR + True + sage: a.parent() + Symbolic Ring + + Note that equations exist in the symbolic ring:: + + sage: # needs sage.schemes + sage: E = EllipticCurve('15a'); E + Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 10*x - 10 over Rational Field + sage: symbolic_expression(E) + x*y + y^2 + y == x^3 + x^2 - 10*x - 10 + sage: symbolic_expression(E) in SR + True + + If ``x`` is a list or tuple, create a vector of symbolic expressions:: + + sage: v = symbolic_expression([x,1]); v + (x, 1) + sage: v.base_ring() + Symbolic Ring + sage: v = symbolic_expression((x,1)); v + (x, 1) + sage: v.base_ring() + Symbolic Ring + sage: v = symbolic_expression((3,1)); v + (3, 1) + sage: v.base_ring() + Symbolic Ring + sage: E = EllipticCurve('15a'); E + Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 10*x - 10 over Rational Field + sage: v = symbolic_expression([E,E]); v + (x*y + y^2 + y == x^3 + x^2 - 10*x - 10, x*y + y^2 + y == x^3 + x^2 - 10*x - 10) + sage: v.base_ring() + Symbolic Ring + + Likewise, if ``x`` is a vector, create a vector of symbolic expressions:: + + sage: u = vector([1, 2, 3]) + sage: v = symbolic_expression(u); v + (1, 2, 3) + sage: v.parent() + Vector space of dimension 3 over Symbolic Ring + + If ``x`` is a list or tuple of lists/tuples/vectors, create a matrix of symbolic expressions:: + + sage: M = symbolic_expression([[1, x, x^2], (x, x^2, x^3), vector([x^2, x^3, x^4])]); M + [ 1 x x^2] + [ x x^2 x^3] + [x^2 x^3 x^4] + sage: M.parent() + Full MatrixSpace of 3 by 3 dense matrices over Symbolic Ring + + If ``x`` is a matrix, create a matrix of symbolic expressions:: + + sage: A = matrix([[1, 2, 3], [4, 5, 6]]) + sage: B = symbolic_expression(A); B + [1 2 3] + [4 5 6] + sage: B.parent() + Full MatrixSpace of 2 by 3 dense matrices over Symbolic Ring + + If ``x`` is a function, for example defined by a ``lambda`` expression, create a + symbolic function:: + + sage: f = symbolic_expression(lambda z: z^2 + 1); f + z |--> z^2 + 1 + sage: f.parent() + Callable function ring with argument z + sage: f(7) + 50 + + If ``x`` is a list or tuple of functions, or if ``x`` is a function that returns a list + or tuple, create a callable symbolic vector:: + + sage: symbolic_expression([lambda mu, nu: mu^2 + nu^2, lambda mu, nu: mu^2 - nu^2]) + (mu, nu) |--> (mu^2 + nu^2, mu^2 - nu^2) + sage: f = symbolic_expression(lambda uwu: [1, uwu, uwu^2]); f + uwu |--> (1, uwu, uwu^2) + sage: f.parent() + Vector space of dimension 3 over Callable function ring with argument uwu + sage: f(5) + (1, 5, 25) + sage: f(5).parent() + Vector space of dimension 3 over Symbolic Ring + + TESTS: + + Lists, tuples, and vectors of length 0 become vectors over a symbolic ring:: + + sage: symbolic_expression([]).parent() + Vector space of dimension 0 over Symbolic Ring + sage: symbolic_expression(()).parent() + Vector space of dimension 0 over Symbolic Ring + sage: symbolic_expression(vector(QQ, 0)).parent() + Vector space of dimension 0 over Symbolic Ring + + If a matrix has dimension 0, the result is still a matrix over a symbolic ring:: + + sage: symbolic_expression(matrix(QQ, 2, 0)).parent() + Full MatrixSpace of 2 by 0 dense matrices over Symbolic Ring + sage: symbolic_expression(matrix(QQ, 0, 3)).parent() + Full MatrixSpace of 0 by 3 dense matrices over Symbolic Ring + + Also functions defined using ``def`` can be used, but we do not advertise it as a use case:: + + sage: def sos(x, y): + ....: return x^2 + y^2 + sage: symbolic_expression(sos) + (x, y) |--> x^2 + y^2 + + Functions that take a varying number of arguments or keyword-only arguments are not accepted:: + + sage: def variadic(x, *y): + ....: return x + sage: symbolic_expression(variadic) + Traceback (most recent call last): + ... + TypeError: unable to convert to a symbolic expression + + sage: def function_with_keyword_only_arg(x, *, sign=1): + ....: return sign * x + sage: symbolic_expression(function_with_keyword_only_arg) + Traceback (most recent call last): + ... + TypeError: unable to convert + to a symbolic expression + """ + from sage.structure.element import is_Matrix + from sage.symbolic.expression import Expression + from sage.symbolic.ring import SR + + if isinstance(x, Expression): + return x + elif hasattr(x, '_symbolic_'): + return x._symbolic_(SR) + elif isinstance(x, (tuple, list, FreeModuleElement)): + expressions = [symbolic_expression(item) for item in x] + if not expressions: + # Make sure it is symbolic also when length is 0 + return vector(SR, 0) + if isinstance(expressions[0], FreeModuleElement): + return matrix(expressions) + return vector(expressions) + elif is_Matrix(x): + if not x.nrows() or not x.ncols(): + # Make sure it is symbolic and of correct dimensions + # also when a matrix dimension is 0 + return matrix(SR, x.nrows(), x.ncols()) + rows = [symbolic_expression(row) for row in x.rows()] + return matrix(rows) + elif callable(x): + from inspect import signature, Parameter + try: + s = signature(x) + except ValueError: + pass + else: + if all(param.kind in (Parameter.POSITIONAL_ONLY, Parameter.POSITIONAL_OR_KEYWORD) + for param in s.parameters.values()): + vars = [SR.var(name) for name in s.parameters.keys()] + result = x(*vars) + if isinstance(result, (tuple, list)): + return vector(SR, result).function(*vars) + else: + return SR(result).function(*vars) + return SR(x) From 33a1ac471e9afffe199dbd4cd61899a8abe0aab1 Mon Sep 17 00:00:00 2001 From: Matthias Koeppe Date: Sun, 12 Nov 2023 19:57:33 -0800 Subject: [PATCH 2/3] src/doc/en/reference/calculus/index.rst: Add sage.calculus.expr to toctree --- src/doc/en/reference/calculus/index.rst | 1 + 1 file changed, 1 insertion(+) diff --git a/src/doc/en/reference/calculus/index.rst b/src/doc/en/reference/calculus/index.rst index 89174c4a062..0f451a50613 100644 --- a/src/doc/en/reference/calculus/index.rst +++ b/src/doc/en/reference/calculus/index.rst @@ -66,6 +66,7 @@ Internal functionality supporting calculus sage/symbolic/expression sage/symbolic/callable + sage/calculus/expr sage/symbolic/assumptions sage/symbolic/relation sage/calculus/calculus From d64bfa1c4d183f3cf7930b875814b55b01e737e2 Mon Sep 17 00:00:00 2001 From: Matthias Koeppe Date: Mon, 13 Nov 2023 14:51:11 -0800 Subject: [PATCH 3/3] src/sage/calculus/expr.py: Move imports from method to module --- src/sage/calculus/expr.py | 7 +++---- 1 file changed, 3 insertions(+), 4 deletions(-) diff --git a/src/sage/calculus/expr.py b/src/sage/calculus/expr.py index 236b46a94d9..0aa62851d24 100644 --- a/src/sage/calculus/expr.py +++ b/src/sage/calculus/expr.py @@ -3,6 +3,9 @@ """ from sage.misc.lazy_import import lazy_import +from sage.structure.element import is_Matrix +from sage.symbolic.expression import Expression +from sage.symbolic.ring import SR lazy_import('sage.modules.free_module_element', ['vector', 'FreeModuleElement']) lazy_import('sage.matrix.constructor', 'matrix') @@ -163,10 +166,6 @@ def symbolic_expression(x): TypeError: unable to convert to a symbolic expression """ - from sage.structure.element import is_Matrix - from sage.symbolic.expression import Expression - from sage.symbolic.ring import SR - if isinstance(x, Expression): return x elif hasattr(x, '_symbolic_'):