-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgemma_decoder.py
425 lines (378 loc) · 24.8 KB
/
gemma_decoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
import torch
from torch import nn
from typing import Optional, Tuple, List
from torch.nn import CrossEntropyLoss
import math
from siglib_vision_encoder import SiglipVisionConfig, SiglipVisionModel
class KVCache():
def __init__(self) -> None:
self.key_cache: List[torch.Tensor] = []
self.value_cache: List[torch.Tensor] = []
def num_items(self) -> int:
if len(self.key_cache) == 0:
return 0
else:
# The shape of the key_cache is [Batch_Size, Num_Heads_KV, Seq_Len, Head_Dim]. We need seq_len as it is concatenated in that direction
return self.key_cache[0].shape[-2]
def update(self, key_states: torch.Tensor, value_states: torch.Tensor, layer_idx: int) -> Tuple[torch.Tensor, torch.Tensor]:
if len(self.key_cache) <= layer_idx:
# If we never added anything to the KV-Cache of this layer, let's create it.
self.key_cache.append(key_states)
self.value_cache.append(value_states)
else:
# ... otherwise we concatenate the new keys with the existing ones.
# each tensor has shape: [Batch_Size, Num_Heads_KV, Seq_Len, Head_Dim]
self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=-2)
self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=-2)
# ... and then we return all the existing keys + the new ones.
return self.key_cache[layer_idx], self.value_cache[layer_idx]
class GemmaConfig():
def __init__(self, vocab_size, hidden_size, intermediate_size, num_hidden_layers, num_attention_heads, num_key_value_heads, head_dim=256, max_position_embeddings=8192, rms_norm_eps=1e-6, rope_theta=10000.0, attention_bias=False, attention_dropout=0.0, pad_token_id=None, **kwargs):
super().__init__()
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.head_dim = head_dim
self.num_key_value_heads = num_key_value_heads
self.rms_norm_eps = rms_norm_eps
self.rope_theta = rope_theta
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
self.pad_token_id = pad_token_id
class PaliGemmaConfig():
def __init__(self, vision_config=None, text_config=None, ignore_index=-100, image_token_index=256000, vocab_size=257152, projection_dim=2048, hidden_size=2048, pad_token_id=None, **kwargs):
super().__init__()
self.ignore_index = ignore_index
self.image_token_index = image_token_index
self.vocab_size = vocab_size
self.projection_dim = projection_dim
self.hidden_size = hidden_size
self.vision_config = vision_config
self.is_encoder_decoder = False
self.pad_token_id = pad_token_id
self.vision_config = SiglipVisionConfig(**vision_config)
self.text_config = text_config
self.text_config = GemmaConfig(**text_config, pad_token_id=pad_token_id)
self.vocab_size = self.text_config.vocab_size
self.text_config.num_image_tokens = (self.vision_config.image_size // self.vision_config.patch_size) ** 2
self.vision_config.projection_dim = projection_dim
class PaliGemmaMultiModalProjector(nn.Module):
def __init__(self, config: PaliGemmaConfig):
super().__init__()
self.linear = nn.Linear(config.vision_config.hidden_size, config.vision_config.projection_dim, bias=True)
def forward(self, image_features):
# [Batch_Size, Num_Patches, Embed_Dim] -> [Batch_Size, Num_Patches, Projection_Dim]
hidden_states = self.linear(image_features)
return hidden_states
class GemmaRMSNorm(nn.Module):
def __init__(self, dim: int, eps: float = 1e-6):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.zeros(dim))
def _norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) # 1 / sqrt([...]), so in formula, instead of divide, we multiply. eps is there to prevent divide by 0 error
def forward(self, x):
output = self._norm(x.float())
# Llama does x.to(float16) * w whilst Gemma is (x * w).to(float16)
output = output * (1.0 + self.weight.float())
return output.type_as(x)
class GemmaMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
def forward(self, x):
# Equivalent to:
# y = self.gate_proj(x) # [Batch_Size, Seq_Len, Hidden_Size] -> [Batch_Size, Seq_Len, Intermediate_Size]
# y = torch.gelu(y, approximate="tanh") # [Batch_Size, Seq_Len, Intermediate_Size]
# j = self.up_proj(x) # [Batch_Size, Seq_Len, Hidden_Size] -> [Batch_Size, Seq_Len, Intermediate_Size]
# z = y * j # [Batch_Size, Seq_Len, Intermediate_Size]
# z = self.down_proj(z) # [Batch_Size, Seq_Len, Intermediate_Size] -> [Batch_Size, Seq_Len, Hidden_Size]
return self.down_proj(nn.functional.gelu(self.gate_proj(x), approximate="tanh") * self.up_proj(x))
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
class GemmaRotaryEmbedding(nn.Module):
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
super().__init__()
self.dim = dim # it is set to the head_dim as rpe applies to each head
self.max_position_embeddings = max_position_embeddings
self.base = base
# Calculate the theta according to the formula theta_i = base^(-2i/dim) where i = 0, 1, 2, ..., dim // 2
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float() / self.dim)) # 10000 ^ (-2i / d) where i is from 0, 1, 2, .. d/2, here x^-1 = 1 / x and also it goes from 0, 2, 4, 6, .. d/2
self.register_buffer("inv_freq", tensor=inv_freq, persistent=False)
@torch.no_grad()
def forward(self, x, position_ids, seq_len=None):
# x: [bs, num_attention_heads, seq_len, head_size]
self.inv_freq.to(x.device)
# Copy the inv_freq tensor for batch in the sequence
# inv_freq_expanded: [Batch_Size, Head_Dim // 2, 1]
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
# position_ids_expanded: [Batch_Size, 1, Seq_Len]
position_ids_expanded = position_ids[:, None, :].float()
device_type = x.device.type
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False): # need full precision for 32 bit comp
# Multiply each theta by the position (which is the argument of the sin and cos functions)
# freqs: [Batch_Size, Head_Dim // 2, 1] @ [Batch_Size, 1, Seq_Len] --> [Batch_Size, Seq_Len, Head_Dim // 2]
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) # when loading the llama model weights in the hugging face implementation, we permute the weights, so this concat will suffice the overall dot product needed as per the rpe paper
# emb: [Batch_Size, Seq_Len, Head_Dim]
emb = torch.cat((freqs, freqs), dim=-1)
# cos, sin: [Batch_Size, Seq_Len, Head_Dim]
cos = emb.cos()
sin = emb.sin()
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
def rotate_half(x):
# Build the [-x2, x1, -x4, x3, ...] tensor for the sin part of the positional encoding.
x1 = x[..., : x.shape[-1] // 2] # Takes the first half of the last dimension instead of alternate because of the permute on the weights of llama
x2 = x[..., x.shape[-1] // 2 :] # Takes the second half of the last dimension instead of alternate because of the permute on the weights of llama
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, unsqueeze_dim=1):
cos = cos.unsqueeze(unsqueeze_dim) # Add the head dimension
sin = sin.unsqueeze(unsqueeze_dim) # Add the head dimension
# Apply the formula (34) of the Rotary Positional Encoding paper.
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
class GemmaAttention(nn.Module):
def __init__(self, config: GemmaConfig, layer_idx: Optional[int] = None):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.attention_dropout = config.attention_dropout
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = config.head_dim
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.max_position_embeddings = config.max_position_embeddings
self.rope_theta = config.rope_theta
self.is_causal = True
assert self.hidden_size % self.num_heads == 0
# Grouped Query Attention
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias)
self.rotary_emb = GemmaRotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings, base=self.rope_theta)
def forward(self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, kv_cache: Optional[KVCache] = None, **kwargs) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size() # [Batch_Size, Seq_Len, Hidden_Size]
# [Batch_Size, Seq_Len, Num_Heads_Q * Head_Dim]
query_states = self.q_proj(hidden_states)
# [Batch_Size, Seq_Len, Num_Heads_KV * Head_Dim]
key_states = self.k_proj(hidden_states)
# [Batch_Size, Seq_Len, Num_Heads_KV * Head_Dim]
value_states = self.v_proj(hidden_states)
# [Batch_Size, Num_Heads_Q, Seq_Len, Head_Dim]
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
# [Batch_Size, Num_Heads_KV, Seq_Len, Head_Dim]
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
# [Batch_Size, Num_Heads_KV, Seq_Len, Head_Dim]
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
# [Batch_Size, Seq_Len, Head_Dim], [Batch_Size, Seq_Len, Head_Dim]
cos, sin = self.rotary_emb(value_states, position_ids, seq_len=None)
# [Batch_Size, Num_Heads_Q, Seq_Len, Head_Dim], [Batch_Size, Num_Heads_KV, Seq_Len, Head_Dim]
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if kv_cache is not None:
key_states, value_states = kv_cache.update(key_states, value_states, self.layer_idx)
# Repeat the key and values to match the number of heads of the query for the sake of grouped query attention - We aren't training explicitly on CUDA Kernel so we will just copy it
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
# Perform the calculation as usual, Q * K^T / sqrt(head_dim). Shape: [Batch_Size, Num_Heads_Q, Seq_Len_Q, Seq_Len_KV]
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
assert attention_mask is not None
attn_weights = attn_weights + attention_mask
# Apply the softmax
# [Batch_Size, Num_Heads_Q, Seq_Len_Q, Seq_Len_KV]
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
# Apply the dropout
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
# Multiply by the values. [Batch_Size, Num_Heads_Q, Seq_Len_Q, Seq_Len_KV] x [Batch_Size, Num_Heads_KV, Seq_Len_KV, Head_Dim] -> [Batch_Size, Num_Heads_Q, Seq_Len_Q, Head_Dim]
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
# Make sure the sequence length is the second dimension. # [Batch_Size, Num_Heads_Q, Seq_Len_Q, Head_Dim] -> [Batch_Size, Seq_Len_Q, Num_Heads_Q, Head_Dim]
attn_output = attn_output.transpose(1, 2).contiguous()
# Concatenate all the heads together. [Batch_Size, Seq_Len_Q, Num_Heads_Q, Head_Dim] -> [Batch_Size, Seq_Len_Q, Num_Heads_Q * Head_Dim]
attn_output = attn_output.view(bsz, q_len, -1)
# Multiply by W_o. [Batch_Size, Seq_Len_Q, Hidden_Size] which is used for mixing the multiple head results in parallel into single head
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
class GemmaDecoderLayer(nn.Module):
def __init__(self, config: GemmaConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = GemmaAttention(config=config, layer_idx=layer_idx)
self.mlp = GemmaMLP(config)
self.input_layernorm = GemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = GemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, kv_cache: Optional[KVCache] = None) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
# [Batch_Size, Seq_Len, Hidden_Size]
hidden_states = self.input_layernorm(hidden_states)
# [Batch_Size, Seq_Len, Hidden_Size]
hidden_states, _, = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
kv_cache=kv_cache,
)
# [Batch_Size, Seq_Len, Hidden_Size]
hidden_states = residual + hidden_states
# [Batch_Size, Seq_Len, Hidden_Size]
residual = hidden_states
# [Batch_Size, Seq_Len, Hidden_Size]
hidden_states = self.post_attention_layernorm(hidden_states)
# [Batch_Size, Seq_Len, Hidden_Size]
hidden_states = self.mlp(hidden_states)
# [Batch_Size, Seq_Len, Hidden_Size]
hidden_states = residual + hidden_states
return hidden_states
class GemmaModel(nn.Module):
def __init__(self, config: GemmaConfig):
super().__init__()
self.config = config
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[GemmaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = GemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def get_input_embeddings(self):
return self.embed_tokens
def forward(self, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, kv_cache: Optional[KVCache] = None) -> torch.FloatTensor:
# [Batch_Size, Seq_Len, Hidden_Size]
hidden_states = inputs_embeds
# [Batch_Size, Seq_Len, Hidden_Size]
normalizer = torch.tensor(self.config.hidden_size**0.5, dtype=hidden_states.dtype)
hidden_states = hidden_states * normalizer
for decoder_layer in self.layers:
# [Batch_Size, Seq_Len, Hidden_Size]
hidden_states = decoder_layer(hidden_states, attention_mask=attention_mask, position_ids=position_ids, kv_cache=kv_cache)
# [Batch_Size, Seq_Len, Hidden_Size]
hidden_states = self.norm(hidden_states)
# [Batch_Size, Seq_Len, Hidden_Size]
return hidden_states
class GemmaForCausalLM(nn.Module):
# Trasnformer model + linear layer for predicting the next token as a blue print
def __init__(self, config):
super().__init__()
self.config = config
self.model = GemmaModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
def get_input_embeddings(self):
return self.model.embed_tokens
def tie_weights(self):
self.lm_head.weight = self.model.embed_tokens.weight
def forward(self, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, kv_cache: Optional[KVCache] = None) -> Tuple:
# input_embeds: [Batch_Size, Seq_Len, Hidden_Size]
# outputs: [Batch_Size, Seq_Len, Hidden_Size]
outputs = self.model(attention_mask=attention_mask, position_ids=position_ids, inputs_embeds=inputs_embeds, kv_cache=kv_cache)
hidden_states = outputs
logits = self.lm_head(hidden_states)
logits = logits.float()
return_data = {"logits": logits}
if kv_cache is not None:
# Return the updated cache
return_data["kv_cache"] = kv_cache
return return_data
class PaliGemmaForConditionalGeneration(nn.Module):
def __init__(self, config: PaliGemmaConfig):
super().__init__()
self.config = config
self.vision_tower = SiglipVisionModel(config.vision_config) # Image Vision transformer Image Encoder
self.multi_modal_projector = PaliGemmaMultiModalProjector(config) # Linear Projectiin Layer after the Image Encoder
self.vocab_size = config.vocab_size
language_model = GemmaForCausalLM(config.text_config) # Transformer Decoder Gemma Model
self.language_model = language_model
self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1
# to share the parameters for token -> embedding at start and embedding -> token at last by just taking inverse instead of recalculating
def tie_weights(self):
return self.language_model.tie_weights()
def _merge_input_ids_with_image_features(self, image_features: torch.Tensor, inputs_embeds: torch.Tensor, input_ids: torch.Tensor, attention_mask: torch.Tensor, kv_cache: Optional[KVCache] = None):
_, _, embed_dim = image_features.shape
batch_size, sequence_length = input_ids.shape
dtype, device = inputs_embeds.dtype, inputs_embeds.device
# Shape: [Batch_Size, Seq_Len, Hidden_Size]
scaled_image_features = image_features / (self.config.hidden_size**0.5)
# Combine the embeddings of the image tokens, the text tokens and mask out all the padding tokens.
final_embedding = torch.zeros(batch_size, sequence_length, embed_dim, dtype=inputs_embeds.dtype, device=inputs_embeds.device)
# Shape: [Batch_Size, Seq_Len]. True for text tokens
text_mask = (input_ids != self.config.image_token_index) & (input_ids != self.pad_token_id)
# Shape: [Batch_Size, Seq_Len]. True for image tokens
image_mask = input_ids == self.config.image_token_index
# Shape: [Batch_Size, Seq_Len]. True for padding tokens
pad_mask = input_ids == self.pad_token_id
# We need to expand the masks to the embedding dimension otherwise we can't use them in torch.where
text_mask_expanded = text_mask.unsqueeze(-1).expand(-1, -1, embed_dim)
pad_mask_expanded = pad_mask.unsqueeze(-1).expand(-1, -1, embed_dim)
image_mask_expanded = image_mask.unsqueeze(-1).expand(-1, -1, embed_dim)
# Add the text embeddings
final_embedding = torch.where(text_mask_expanded, inputs_embeds, final_embedding)
# Insert image embeddings. We can't use torch.where because the sequence length of scaled_image_features is not equal to the sequence length of the final embedding
final_embedding = final_embedding.masked_scatter(image_mask_expanded, scaled_image_features)
# Zero out padding tokens
final_embedding = torch.where(pad_mask_expanded, torch.zeros_like(final_embedding), final_embedding)
#### CREATE THE ATTENTION MASK ####
dtype, device = inputs_embeds.dtype, inputs_embeds.device
min_dtype = torch.finfo(dtype).min
q_len = inputs_embeds.shape[1]
if kv_cache is None or kv_cache.num_items() == 0:
# Do not mask any token, because we're in the prefill phase. In Vision tasks, the outputs are generated irrespective of input text, so we will not use mask in the input text part but for generated part, we will have it. But as we are using KV Cache we will have only one single row and actually we don't need mask in that case as well
# This only works when we have no padding
causal_mask = torch.full(
(batch_size, q_len, q_len), fill_value=0, dtype=dtype, device=device
)
else:
# Since we are generating tokens, the query must be one single token
assert q_len == 1
kv_len = kv_cache.num_items() + q_len
# Also in this case we don't need to mask anything, since each query should be able to attend all previous tokens.
# This only works when we have no padding
causal_mask = torch.full(
(batch_size, q_len, kv_len), fill_value=0, dtype=dtype, device=device
)
# Add the head dimension for multi head attention parallel processing
# [Batch_Size, Q_Len, KV_Len] -> [Batch_Size, Num_Heads_Q, Q_Len, KV_Len]
causal_mask = causal_mask.unsqueeze(1)
if kv_cache is not None and kv_cache.num_items() > 0:
# The position of the query is just the last position
# We get attention mask along side input_ids from processing paligemma which has all 1's as it is not masked and we count them like [0, 1, 2, 3, 4... 255, 256, 257, 258, 259] as position id for rotary positional embedding
position_ids = attention_mask.cumsum(-1)[:, -1]
if position_ids.dim() == 1:
position_ids = position_ids.unsqueeze(0)
else:
# Create a position_ids based on the size of the attention_mask
# For masked tokens, use the number 1 as position.
position_ids = (attention_mask.cumsum(-1)).masked_fill_((attention_mask == 0), 1).to(device)
return final_embedding, causal_mask, position_ids
def forward(self, input_ids: torch.LongTensor = None, pixel_values: torch.FloatTensor = None, attention_mask: Optional[torch.Tensor] = None, kv_cache: Optional[KVCache] = None) -> Tuple:
# Make sure the input is right-padded
assert torch.all(attention_mask == 1), "The input cannot be padded"
# 1. Extracting the input embeddings
# shape: (Batch_Size, Seq_Len, Hidden_Size)
inputs_embeds = self.language_model.get_input_embeddings()(input_ids)
# 2. Merge text and images
# [Batch_Size, Channels, Height, Width] -> [Batch_Size, Num_Patches, Embed_Dim]
selected_image_feature = self.vision_tower(pixel_values.to(inputs_embeds.dtype))
# [Batch_Size, Num_Patches, Embed_Dim] -> [Batch_Size, Num_Patches, Hidden_Size]
image_features = self.multi_modal_projector(selected_image_feature)
# Merge the embeddings of the text tokens and the image tokens
inputs_embeds, attention_mask, position_ids = self._merge_input_ids_with_image_features(image_features, inputs_embeds, input_ids, attention_mask, kv_cache)
outputs = self.language_model(attention_mask=attention_mask, position_ids=position_ids, inputs_embeds=inputs_embeds, kv_cache=kv_cache)
return outputs