-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvert.py
executable file
·542 lines (448 loc) · 20.3 KB
/
convert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
#!/usr/bin/env python
import sys,os
import argparse
import numpy
import json
import itertools
import glob
import matplotlib.pyplot as plt
from scipy import ndimage
REFAA = "refpep/canonic/"
REFPEPTOID = "refpep/peptoid/"
atom_dtype = numpy.dtype( [
("atomname", numpy.unicode_, 4),
("resname", numpy.unicode_, 3),
("chnid", numpy.unicode_, 1),
("resid", numpy.int32),
("X", numpy.float32, 3),
("element", numpy.unicode_, 2),
] )
# pdb reader
def parse_pdb(pdbfile):
allatoms = []
for line in pdbfile:
if line[:4] == 'ATOM' or line[:6] == "HETATM":
resid = line[22:26]
if (resid == ' '):
resid = 0
else:
resid = int(resid)
elt = line[76:78].strip()
if (elt != 'H'):
split_line = (
line[12:16], line[17:20], line[21], resid,
(line[30:38], line[38:46], line[46:54]), elt
)
allatoms.append(split_line)
return (numpy.array(allatoms, dtype=atom_dtype))
# pdb writer
def write_pdb(atoms, f=None):
if (f is None):
f = sys.stdout
counter = 1
for atom in atoms:
f.write ("%-6s%5s %4s %3s %s%4d %8.3f%8.3f%8.3f%6.2f%6.2f\n"%(
"ATOM", counter, atom['atomname'], atom['resname'],
atom['chnid'], atom['resid'], atom['X'][0], atom['X'][1], atom['X'][2],
1.0, 0.0 ) )
counter += 1
# get chirality
def get_torsion(X,Y,Z,W):
def normalize(v):
norm = numpy.linalg.norm(v)
if norm == 0:
return v
return v / norm
A = normalize(Y-X)
B = normalize(Z-Y)
C = normalize(W-Z)
angle = 0 # "undefined" value
if ( numpy.linalg.norm(B) != 0 ):
xval = -numpy.dot(A,C) + numpy.dot(A,B)*numpy.dot(B,C)
yval = numpy.dot(A, numpy.cross(B,C))
if (xval != 0 or yval != 0):
angle = numpy.degrees( numpy.arctan2(yval,xval) )
return angle
class PeptideParser:
def __init__( self, minlen=0 ):
self.minlen = minlen
self.sc_names, self.sc_codes, self.sc_bfs_element, self.sc_bfs_atomname = [],[],[],[]
self.sc_bfs_index,self.sc_bonds,self.sc_chiralities = [],[],[]
self.n_names, self.n_codes, self.n_bfs_element, self.n_bfs_atomname = [],[],[],[]
self.n_bfs_index,self.n_bonds,self.n_chiralities = [],[],[]
self.newaaidx, self.newpeptoididx = 1,1;
# parse reference sidechains
for reffile in glob.glob(REFAA+'*.pdb'):
base=os.path.basename(reffile)
stem=os.path.splitext(base)[0]
with open(reffile,'r') as ref:
refatoms = parse_pdb( ref )
refbonds = self.get_bondgraph( refatoms )
refpeptide = self.get_peptides( refatoms, refbonds )
assert (len(refpeptide) == 1)
sc_atms, sc_atmdepths, sc_bonds = self.get_sidechain(
refpeptide[0], refpeptide[0], refatoms, refbonds )
sc_elts = [refatoms[j]['element'] for j in sc_atms]
sc_names = [refatoms[j]['atomname'] for j in sc_atms]
sc_atms, sc_bonds = self.generate_perturbations( sc_elts, sc_atmdepths, sc_bonds )
# AIB special case
if (len(sc_atms[0]) <= 1 or stem == 'AIB'):
chirality = 0
else:
chirality = int (numpy.sign( get_torsion(
refatoms['X'][refpeptide[0][0]],
refatoms['X'][refpeptide[0][2]],
refatoms['X'][refpeptide[0][1]],
refatoms['X'][sc_atms[0][1]]
) ) )
for i in range(len(sc_atms)):
self.sc_names.append( stem )
self.sc_codes.append( refatoms[0]['resname'] )
self.sc_bfs_element.append( [sc_elts[j] for j in sc_atms[i]] )
self.sc_bfs_atomname.append( [sc_names[j] for j in sc_atms[i]] )
self.sc_bfs_index.append( sc_atms[i][1:] )
self.sc_bonds.append( sc_bonds[i] )
self.sc_chiralities.append( chirality )
# parse reference peptoids
for reffile in glob.glob(REFPEPTOID+'*.pdb'):
base=os.path.basename(reffile)
stem=os.path.splitext(base)[0]
with open(reffile,'r') as ref:
refatoms = parse_pdb( ref )
refbonds = self.get_bondgraph( refatoms )
refpeptide = self.get_peptides( refatoms, refbonds )
assert (len(refpeptide) == 1)
n_atms, n_atmdepths, n_bonds = self.get_sidechain(
refpeptide[0], refpeptide[0], refatoms, refbonds, link_atom=refpeptide[0][0] )
n_elts = [refatoms[j]['element'] for j in n_atms]
n_names = [refatoms[j]['atomname'] for j in n_atms]
n_atms, n_bonds = self.generate_perturbations( n_elts, n_atmdepths, n_bonds )
# AIB special case
if (len(n_atms[0]) <= 1 or stem == 'AIB'):
chirality = 0
else:
chirality = int (numpy.sign( get_torsion(
refatoms['X'][refpeptide[0][0]],
refatoms['X'][refpeptide[0][2]],
refatoms['X'][refpeptide[0][1]],
refatoms['X'][n_atms[0][1]]
) ) )
for i in range(len(n_atms)):
self.n_names.append( stem )
self.n_codes.append( refatoms[0]['resname'] )
self.n_bfs_element.append( [n_elts[j] for j in n_atms[i]] )
self.n_bfs_atomname.append( [n_names[j] for j in n_atms[i]] )
self.n_bfs_index.append( n_atms[i][1:] )
self.n_bonds.append( n_bonds[i] )
self.n_chiralities.append( chirality )
def identify_aa( self, elts, atmdepths, bonds, chirality, addnew=False):
scindex = None
for i in range(len(self.sc_names)):
if (
self.sc_bfs_element[i] == elts
and self.sc_bonds[i] == bonds
and (
self.sc_chiralities[i] == chirality
or self.sc_chiralities[i] == 0 # AIB special case
)
):
scindex = i
break
if (scindex is None and len(elts)<30 and addnew):
atms = [i for i in range(len(elts))]
atmnames = [f" %s%-2d"%(e,d) for d,e in enumerate(elts)]
sc_atms, sc_bonds = self.generate_perturbations( elts, atmdepths, bonds )
resname = f"A%02d"%(self.newaaidx)
scindex = len(self.sc_names)
for i in range(len(sc_atms)):
self.sc_names.append( resname )
self.sc_codes.append( resname )
self.sc_bfs_element.append( [elts[j] for j in sc_atms[i]] )
self.sc_bfs_atomname.append( [atmnames[j] for j in sc_atms[i]] )
self.sc_bfs_index.append( sc_atms[i][1:] )
self.sc_bonds.append( sc_bonds[i] )
self.sc_chiralities.append( chirality )
self.newaaidx += 1
return scindex
def identify_peptoid( self, elts, atmdepths, bonds, chirality, addnew=False):
nindex = None
for i in range(len(self.n_names)):
if (
self.n_bfs_element[i] == elts
and self.n_bonds[i] == bonds
and (
self.n_chiralities[i] == chirality
or self.n_chiralities[i] == 0 # AIB special case
)
):
nindex = i
break
if (nindex is None and len(elts)<30 and addnew):
atms = [i for i in range(len(elts))]
atmnames = [f" %s%-2d"%(e,d) for d,e in enumerate(elts)]
n_atms, n_bonds = self.generate_perturbations( elts, atmdepths, bonds )
resname = f"N%02d"%(self.newpeptoididx)
nindex = len(self.n_names)
for i in range(len(n_atms)):
self.n_names.append( resname )
self.n_codes.append( resname )
self.n_bfs_element.append( [elts[j] for j in n_atms[i]] )
self.n_bfs_atomname.append( [atmnames[j] for j in n_atms[i]] )
self.n_bfs_index.append( n_atms[i][1:] )
self.n_bonds.append( n_bonds[i] )
self.n_chiralities.append( chirality )
self.newpeptoididx += 1
return nindex
def parse( self, atoms ):
bonds = self.get_bondgraph( atoms )
Ss = (atoms['element']=='S').nonzero()
idxs = numpy.array([(i,j) for i in Ss for j in Ss])
bonds[idxs[:,0],idxs[:,1]] = False
atoms,bonds = self.remove_unbound( atoms, bonds )
# remove S-S bonds
peptides = self.get_peptides( atoms, bonds )
if (len(peptides) < self.minlen):
return None
pep_indices = [atm for pep in peptides for atm in pep]
mappedatoms = atoms.copy()
atomorder = []
for resid,pep in enumerate(peptides):
# sidechain
scatms, scatmdepths, scbonds = self.get_sidechain( pep, pep_indices, atoms, bonds )
scelements = [atoms[i]['element'] for i in scatms]
if (len(scatms) <= 1):
chirality = 0
else:
chirality = int (numpy.sign( get_torsion(
atoms['X'][pep[0]],
atoms['X'][pep[2]],
atoms['X'][pep[1]],
atoms['X'][scatms[1]]
) ) )
natms, natmdepths, nbonds = self.get_sidechain( pep, pep_indices+scatms, atoms, bonds, link_atom=pep[0] )
nelements = [atoms[i]['element'] for i in natms]
# 1: alpha-AA (possibly n-methylated)
if (len(natms)<=2):
scindex = self.identify_aa(scelements, scatmdepths, scbonds, chirality, addnew=True)
if (scindex == None):
return None
mappedatoms['atomname'][pep] = [" N "," CA ", " C ", " O "]
mappedatoms['atomname'][scatms] = self.sc_bfs_atomname[scindex]
atom_indices_ordered = [ pep[x] for x in (0,1,2,3) ] ## bb
if (len(natms) == 2):
nmethyl = natms[1]
mappedatoms['atomname'][nmethyl] = " CN "
atom_indices_ordered += [ nmethyl ]
atom_indices_ordered += [scatms[x] for x in self.sc_bfs_index[scindex]]
atomorder += atom_indices_ordered
mappedatoms['resname'][atom_indices_ordered] = self.sc_codes[scindex]
mappedatoms['resid'][atom_indices_ordered] = resid+1
# 2: peptoid
elif (len(scatms)<=1):
nindex = self.identify_peptoid(nelements, natmdepths, nbonds, 0, addnew=True)
if (nindex == None):
return None
mappedatoms['atomname'][pep] = [" N "," CA ", " C ", " O "]
mappedatoms['atomname'][natms] = self.n_bfs_atomname[nindex]
atom_indices_ordered = [ pep[x] for x in (0,1,2,3) ] ## bb
atom_indices_ordered += [ natms[x] for x in self.n_bfs_index[nindex]]
atomorder += atom_indices_ordered
mappedatoms['resname'][atom_indices_ordered] = self.n_codes[nindex]
mappedatoms['resid'][atom_indices_ordered] = resid+1
else:
return None
# ensure that nothing we've mapped is bonded to something we haven't mapped
if (len(numpy.unique(atomorder)) != len(atoms)):
return None
return mappedatoms[atomorder]
# bondgraph
def get_bondgraph( self, atoms ):
dists = numpy.linalg.norm( atoms['X'][:,None] - atoms['X'][None,:], axis=-1)
bonds = ((dists>0.0) * (dists<2.0)).astype(numpy.bool)
return bonds
# remove disconnected components (water & ions)
# maxconn is max connected components to remove
def remove_unbound( self, atoms, bonds, maxconn=5 ):
# recursive edge traversal
def expand(toexpand, edges, visited):
new_nodes = []
for idx in range(len(edges[0])):
i,j = edges[0][idx], edges[1][idx]
if (i in toexpand and j not in visited):
new_nodes.append(j)
if (len(new_nodes) == 0):
return visited
else:
return expand(new_nodes, edges, [*new_nodes,*visited])
largest_subgraph = numpy.zeros( atoms.shape[0], dtype=numpy.bool )
visited = numpy.zeros( atoms.shape[0], dtype=numpy.bool )
maxsize=0
# bfs
for i,atm in enumerate (atoms):
if (not visited[i]):
graph_i = expand([i], bonds.nonzero(), [i])
visited[graph_i] = True
if (len(graph_i)>maxsize):
maxsize = len(graph_i)
largest_subgraph[:] = False
largest_subgraph[graph_i] = True
mi = (largest_subgraph[:,None]*largest_subgraph[None,:]).nonzero()
return atoms[largest_subgraph],bonds[mi].reshape(sum(largest_subgraph),-1)
# peptide bonds
def get_peptides( self, atoms, bonds ):
# recursive path expansion
def grow(direction, path, edges):
longest_path, unassigned = path, edges
for [i,j] in edges:
new_path = None
if (direction<0 and path[0]==j and i not in path):
new_path = [i,*path]
elif (direction>0 and path[-1]==i and j not in path):
new_path = [*path,j]
if (new_path is not None):
path_i,edges_i = grow(
direction, new_path, [e for e in edges if e != [i,j]])
if (len(path_i)>len(longest_path)):
longest_path = path_i
unassigned = edges_i
return longest_path, unassigned
peptides = []
allbonds = bonds.nonzero()
for idx in range(len(allbonds[0])):
i,j = allbonds[0][idx], allbonds[1][idx]
if (atoms[i]['element'] == 'N' and atoms[j]['element'] == 'C'):
for k in bonds[j].nonzero()[0]:
if (atoms[k]['element'] == 'C'):
for l in bonds[k].nonzero()[0]:
if (atoms[l]['element'] == 'O'):
peptides.append([i,j,k,l])
if (len(peptides) == 0):
return []
# find peptide bonds
nlinks = numpy.zeros(len(peptides))
for i,pep1 in enumerate(peptides):
for j,pep2 in enumerate(peptides):
if ( bonds[pep1[2],pep2[0]] ):
nlinks[i] += 1
nlinks[j] += 1
# if there is overlap, favor the peptide with more connections
peptide_dedup = []
for i,pep1 in enumerate(peptides):
keep_i = True
for j,pep2 in enumerate(peptides):
if (i==j):
continue
if (len (set(pep1).intersection(pep2))>0):
if (nlinks[j] > nlinks[i] or
(nlinks[j] == nlinks[i] and i>j)
):
keep_i = False
break
if (keep_i):
peptide_dedup.append(pep1)
links = []
for i,pep1 in enumerate(peptide_dedup):
for j,pep2 in enumerate(peptide_dedup):
if ( bonds[pep1[2],pep2[0]] ):
links.append((i,j))
longest_path = [0]
for (i,j) in links:
path,unassigned = grow(
1, [i,j],
[e for e in links if e != [i,j]])
path,unassigned = grow(-1, path,unassigned)
if (len(path) > len(longest_path)):
longest_path = path
linked_peptides = [peptide_dedup[i] for i in longest_path]
return linked_peptides
def generate_perturbations(self, sc_elts, sc_atom_depth, sc_bonds):
sc_atms = [i for i in range(len(sc_elts))]
sc_atms_enum, sc_bonds_enum = [sc_atms],[sc_bonds]
ndepths = max(sc_atom_depth)
for depth in range(1,ndepths+1):
atms_at_depth = [a for i,a in enumerate(sc_atms) if sc_atom_depth[i]==depth]
elts_at_depth = [sc_elts[j] for j in atms_at_depth]
nassignments_at_depth_minus_1 = len(sc_atms_enum)
toadd_sc_atms, toadd_sc_bonds = [],[]
for scramble in itertools.permutations(atms_at_depth):
if (scramble == tuple(atms_at_depth)):
continue
scramble_elts = [sc_elts[j] for j in scramble]
if (elts_at_depth == scramble_elts):
for i in range(nassignments_at_depth_minus_1):
new_sc_bonds = []
for [a,b] in sc_bonds_enum[i]:
mapa = a
if (sc_atms[a] in atms_at_depth):
mapa = sc_atms.index( scramble[atms_at_depth.index(sc_atms[a])] )
mapb = b
if (sc_atms[b] in atms_at_depth):
mapb = sc_atms.index( scramble[atms_at_depth.index(sc_atms[b])] )
new_sc_bonds.append([mapa,mapb])
new_sc_bonds.sort()
if (new_sc_bonds != sc_bonds):
new_sc_atms = [
a if a not in atms_at_depth else scramble[atms_at_depth.index(a)]
for a in sc_atms_enum[i]]
sc_atms_enum.append(new_sc_atms)
sc_bonds_enum.append(new_sc_bonds)
return sc_atms_enum, sc_bonds_enum
# get SC
def get_sidechain( self, peptide, usedatoms, atoms, bonds, link_atom=None ):
if (link_atom is None):
link_atom = peptide[1]
sc_atms, sc_atom_depth, sc_bonds = [link_atom], [0], []
# breadth-first traversal
to_expand = [link_atom]
round = 0
while (len(to_expand) > 0):
expanding = to_expand
to_expand = []
round += 1
for i in expanding:
bonds_i = bonds[i].nonzero()[0]
for j in bonds_i:
if (not j in usedatoms and not j in sc_atms and not j in to_expand):
to_expand.append(j)
reindex = numpy.argsort(atoms[to_expand]['element'])
to_expand = [to_expand[x] for x in reindex]
for j in to_expand:
sc_atms.append(j)
sc_atom_depth.append(round)
Blist = bonds.nonzero()
for i in range(len(Blist[0])):
ai,aj = Blist[0][i],Blist[1][i]
if (ai in sc_atms and aj in sc_atms):
idxi = sc_atms.index(ai)
idxj = sc_atms.index(aj)
if (idxi<idxj):
sc_bonds.append( [idxi, idxj] )
elif (ai in sc_atms and aj in peptide):
idxi = sc_atms.index(ai)
idxj = peptide.index(aj)
if (idxi!=idxj):
sc_bonds.append( [idxi, -idxj] )
sc_bonds.sort()
return sc_atms, sc_atom_depth, sc_bonds
# main
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='ccdc converter')
parser.add_argument('pdbs', nargs='+', help='input pdbs')
parser.add_argument('--minlen', help='min peptide length', type=int, default=3)
args = parser.parse_args()
parser = PeptideParser( args.minlen )
# 1) read pdb
for pdb in (args.pdbs):
print(">",pdb)
base=os.path.basename(pdb)
stem=os.path.splitext(base)[0]
with open(pdb) as pdbfile:
atoms = parse_pdb( pdbfile )
fixedatoms = parser.parse(atoms)
if (fixedatoms is not None):
filename = stem+"_fixed.pdb"
with open(filename,'w') as outfile:
write_pdb( fixedatoms, outfile )
print(" ... good")
else:
print(" ... no good")