-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathamx-l2.cpp
565 lines (482 loc) · 18.6 KB
/
amx-l2.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
#include "jit.hpp"
#include <vector>
#include "dnnl_kernels.hpp"
#if !defined(XBYAK64_GCC)
#error NOT SUPPORTED
#endif
#include "timeit.hpp"
#ifdef _WIN32
#include <intrin.h>
#else
#include <x86intrin.h>
#endif
#include <stdlib.h>
#include <omp.h>
#include "bf16.hpp"
// #include "kernels_avx512.hpp"
#include "kernels_amx.hpp"
#include "tensor2D.hpp"
static tensor2D<ov::bfloat16> repack_weights(tensor2D<ov::bfloat16>& Bt) {
int N = Bt.dims[0];
int K = Bt.dims[1];
tensor2D<ov::bfloat16> BPacked(K * N, 1, true);
for (int n = 0, i = 0; n < N; n += 32) {
for (int k = 0; k < K; k += 32) {
amx_kernel::functional::transpose_epi32_16x16(&BPacked[i * 16 * 32], &Bt(n, k), Bt.stride);
i++;
amx_kernel::functional::transpose_epi32_16x16(&BPacked[i * 16 * 32], &Bt(n + 16, k), Bt.stride);
i++;
}
}
return BPacked;
}
//================================================================================================================
class Linear32x32_AMX : public jit_generator {
public:
TileConfig m_tile_cfg;
bool m_do_accumulation;
tensor2D<ov::bfloat16> m_Weight;
int64_t m_ktiles;
int m_K;
int m_N;
Linear32x32_AMX(tensor2D<ov::bfloat16>& B, bool do_accumulation = false) : m_do_accumulation(do_accumulation) {
// B: [K, N]
m_K = B.dims[0];
m_N = B.dims[1];
ASSERT((m_K % 32) == 0);
auto Bt = B.Tr();
m_Weight = repack_weights(Bt);
m_ktiles = m_K / 32;
create_kernel("Linear32x32_AMX");
m_tile_cfg.reset(1, 0,
{
{16, 64}, // C:0
{16, 64}, // C:1
{16, 64}, // C:2
{16, 64}, // C:3
{16, 64}, // A0:4
{16, 64}, // A1:5
{16, 64}, // B0:6
{16, 64}, // B1:7
});
}
// to save push/pop: do not use `abi_save_gpr_regs`
Xbyak::Reg64 reg_A_addr = abi_param1;
Xbyak::Reg64 reg_A_stride = abi_param2;
Xbyak::Reg64 reg_B_addr = abi_param3;
Xbyak::Reg64 reg_C_addr = abi_param4;
Xbyak::Reg64 reg_C_stride = abi_param5;
Xbyak::Reg64 reg_ktiles = rax;
Xbyak::Reg64 reg_B_stride = r10;
Xbyak::Reg64 reg_A1_addr = r11;
Xbyak::Tmm tmmC00 = tmm0;
Xbyak::Tmm tmmC10 = tmm1;
Xbyak::Tmm tmmC01 = tmm2;
Xbyak::Tmm tmmC11 = tmm3;
Xbyak::Tmm tmmA0 = tmm4;
Xbyak::Tmm tmmA1 = tmm5;
Xbyak::Tmm tmmB0 = tmm6;
Xbyak::Tmm tmmB1 = tmm7;
void generate() {
/*
B: 1x2 tiles
A : 2x1 tiles C: 2x2 tiles
*/
Xbyak::Label loop_over_ktiles;
if (m_do_accumulation) {
auto reg_C1_addr = reg_A1_addr; // reuse reg_A1_addr
#if 0
mov(reg_B_stride, 64);
tileloadd(tmmC00, ptr[reg_C_addr + reg_B_stride]);
tileloadd(tmmC01, ptr[reg_C_addr + reg_B_stride + 1024]);
tileloadd(tmmC10, ptr[reg_C_addr + reg_B_stride + 1024 * 2]);
tileloadd(tmmC11, ptr[reg_C_addr + reg_B_stride + 1024 * 3]);
#else
tileloadd(tmmC00, ptr[reg_C_addr + reg_C_stride]);
tileloadd(tmmC01, ptr[reg_C_addr + reg_C_stride + 64]);
lea(reg_C1_addr, ptr[reg_C_addr + reg_C_stride * 8]);
lea(reg_C1_addr, ptr[reg_C1_addr + reg_C_stride * 8]);
tileloadd(tmmC10, ptr[reg_C1_addr + reg_C_stride]);
tileloadd(tmmC11, ptr[reg_C1_addr + reg_C_stride + 64]);
#endif
} else {
tilezero(tmmC00);
tilezero(tmmC01);
tilezero(tmmC10);
tilezero(tmmC11);
}
mov(reg_B_stride, reinterpret_cast<uintptr_t>(&m_ktiles));
mov(reg_ktiles, ptr[reg_B_stride + 0]);
lea(reg_A1_addr, ptr[reg_A_addr + reg_A_stride * 8]);
lea(reg_A1_addr, ptr[reg_A1_addr + reg_A_stride * 8]);
mov(reg_B_stride, 64);
auto const_A_steps = 64;
align(64, false);
L(loop_over_ktiles);
// for (int k = 0; k < Ktiles; k++) {
tileloadd(tmmA0, ptr[reg_A_addr + reg_A_stride]);
tileloadd(tmmB0, ptr[reg_B_addr + reg_B_stride]);
lea(reg_B_addr, ptr[reg_B_addr + 1024]);
tdpbf16ps(tmmC00, tmmA0, tmmB0);
tileloadd(tmmA1, ptr[reg_A1_addr + reg_A_stride]);
tdpbf16ps(tmmC10, tmmA1, tmmB0);
tileloadd(tmmB1, ptr[reg_B_addr + reg_B_stride]);
// prefetch [num_Ktiles X 256] bytes
tdpbf16ps(tmmC01, tmmA0, tmmB1);
tdpbf16ps(tmmC11, tmmA1, tmmB1);
//}
lea(reg_A_addr, ptr[reg_A_addr + const_A_steps]);
lea(reg_A1_addr, ptr[reg_A1_addr + const_A_steps]);
lea(reg_B_addr, ptr[reg_B_addr + 1024]);
dec(reg_ktiles);
jnz(loop_over_ktiles, T_NEAR);
#if 0
tilestored(ptr[reg_C_addr + reg_B_stride], tmmC00);
tilestored(ptr[reg_C_addr + reg_B_stride + 1024], tmmC01);
tilestored(ptr[reg_C_addr + reg_B_stride + 1024 * 2], tmmC10);
tilestored(ptr[reg_C_addr + reg_B_stride + 1024 * 3], tmmC11);
#else
tilestored(ptr[reg_C_addr + reg_C_stride], tmmC00);
tilestored(ptr[reg_C_addr + reg_C_stride + 64], tmmC01);
lea(reg_C_addr, ptr[reg_C_addr + reg_C_stride * 8]);
lea(reg_C_addr, ptr[reg_C_addr + reg_C_stride * 8]);
tilestored(ptr[reg_C_addr + reg_C_stride], tmmC10);
tilestored(ptr[reg_C_addr + reg_C_stride + 64], tmmC11);
#endif
ret();
}
void run(tensor2D<ov::bfloat16>& A, tensor2D<float>& C) {
TileConfigScope tcfg(m_tile_cfg);
// loop order
int M = A.dims[0];
int K = A.dims[1];
// ASSERT((M%32) == 0); ASSERT(K == m_K); ASSERT(C.dims[0] == M); ASSERT(C.dims[1] == m_N);
auto strideA = A.stride;
auto strideC = C.stride;
auto* pA = reinterpret_cast<uint8_t*>(&A[0]);
auto* pC = reinterpret_cast<uint8_t*>(&C[0]);
for (int m = 0; m < M; m += 32, pA += 32 * strideA, pC += 32 * strideC) {
auto* pB = reinterpret_cast<uint8_t*>(&m_Weight[0]);
for (int n = 0; n < m_N; n += 32, pB += m_ktiles * 2048) {
(*this)(pA, strideA, pB, pC + n * sizeof(float), strideC);
}
}
}
};
int fix_stride(int stride) {
// according to [Tip6](https://www.intel.com/content/www/us/en/developer/articles/technical/a-simple-example-to-measure-the-performance-of-an-intel-mkl-function.html)
int best_stride_cache_lines = (stride + 63) / 64;
if ((best_stride_cache_lines % 1) == 0)
best_stride_cache_lines++;
return best_stride_cache_lines * 64;
}
void test_L2(int M, int K, int N, bool do_padK = true) {
int best_padded_K = K;
if (do_padK) {
best_padded_K = fix_stride(K * sizeof(ov::bfloat16)) / sizeof(ov::bfloat16);
std::cout << "[WARNING] K padded from " << K << " to " << best_padded_K << std::endl;
}
tensor2D<ov::bfloat16> A_padded(M, best_padded_K, true);
tensor2D<ov::bfloat16> A(M, K, &A_padded[0], A_padded.stride);
tensor2D<ov::bfloat16> B(K, N, true);
tensor2D<float> C0(M, N, true); // reference result
tensor2D<float> C1(M, N, true); // reference result
Linear32x32_AMX jit_amx(B);
C0 = 0;
matmul(A, B, C0);
jit_amx.run(A, C1);
std::string acc;
const char* acc_color = nullptr;
if (C0 == C1) {
acc = "[PASS]";
} else {
if (std::getenv("SHOW_ERR")) {
std::cout << "============= A ================ " << std::endl;
std::cout << A << std::endl;
std::cout << "============= B ================ " << std::endl;
std::cout << B << std::endl;
logger() << C0 << std::endl;
logger() << C1 << std::endl;
}
acc = "[FAIL]";
acc_color = "1;31";
}
perf_log plog({
{PERF_TYPE_HARDWARE, PERF_COUNT_HW_CPU_CYCLES, "HW_CYCLES"},
//{PERF_TYPE_RAW, 0x08d1, "L1_MISS"},
//{PERF_TYPE_RAW, 0x04b2, "PORT_2_3_10"},
//{PERF_TYPE_RAW, 0x01b2, "PORT_0"},
//{PERF_TYPE_RAW, 0x02b2, "PORT_1"},
//{PERF_TYPE_RAW, 0x10b2, "PORT_4_9"},
//{PERF_TYPE_RAW, 0x20b2, "PORT_5_11"},
//{PERF_TYPE_RAW, 0x40b2, "PORT_6"},
//{PERF_TYPE_RAW, 0x80b2, "PORT_7_8"},
{PERF_TYPE_RAW, 0x21a6, "BOUND_ON_LOADS"},
{PERF_TYPE_RAW, 0x019c,"IDQ_UOPS_NOT_DELIVERED"},
{PERF_TYPE_RAW, 0x10d1, "L2_MISS"},
});
plog.tag(__func__, M, K, N, acc, "padK", best_padded_K);
plog.color(acc_color);
#pragma omp parallel
{
tensor2D<ov::bfloat16> A2_padded = A_padded.clone();
tensor2D<ov::bfloat16> A2(M, K, &A2_padded[0], A2_padded.stride);
tensor2D<float> C2(M, N, true); // reference result
Linear32x32_AMX jit_amx2(B);
jit_amx2.run(A2, C2);
jit_amx2.run(A2, C2);
#pragma omp barrier
plog(
[&]() {
for (int r = 0; r < 10; r++) {
jit_amx2.run(A2, C2);
}
},
10 * 2.0 * M * N * K // OPS per call per core);
);
}
}
//================================================================================================================
class Linear32x32_AMX_blockedA : public jit_generator {
public:
TileConfig m_tile_cfg;
bool m_do_accumulation;
tensor2D<ov::bfloat16> m_Weight;
int64_t m_ktiles;
int m_K;
int m_N;
Linear32x32_AMX_blockedA(tensor2D<ov::bfloat16>& B, bool do_accumulation = false) : m_do_accumulation(do_accumulation) {
// B: [K, N]
m_K = B.dims[0];
m_N = B.dims[1];
ASSERT((m_K % 32) == 0);
auto Bt = B.Tr();
m_Weight = repack_weights(Bt);
m_ktiles = m_K / 32;
create_kernel("Linear32x32_AMX_blockedA");
m_tile_cfg.reset(1, 0,
{
{16, 64}, // C:0
{16, 64}, // C:1
{16, 64}, // C:2
{16, 64}, // C:3
{16, 64}, // A0:4
{16, 64}, // A1:5
{16, 64}, // B0:6
{16, 64}, // B1:7
});
}
const TileConfig& tile_config() { return m_tile_cfg; }
// to save push/pop: do not use `abi_save_gpr_regs`
Xbyak::Reg64 reg_A_addr = abi_param1;
Xbyak::Reg64 reg_A_stride = abi_param2;
Xbyak::Reg64 reg_B_addr = abi_param3;
Xbyak::Reg64 reg_C_addr = abi_param4;
Xbyak::Reg64 reg_C_stride = abi_param5;
Xbyak::Reg64 reg_ktiles = rax;
Xbyak::Reg64 reg_B_stride = r10;
Xbyak::Reg64 reg_A1_addr = r11;
Xbyak::Tmm tmmC00 = tmm0;
Xbyak::Tmm tmmC10 = tmm1;
Xbyak::Tmm tmmC01 = tmm2;
Xbyak::Tmm tmmC11 = tmm3;
Xbyak::Tmm tmmA0 = tmm4;
Xbyak::Tmm tmmA1 = tmm5;
Xbyak::Tmm tmmB0 = tmm6;
Xbyak::Tmm tmmB1 = tmm7;
void generate() {
/*
B: 1x2 tiles
A : 2x1 tiles C: 2x2 tiles
*/
Xbyak::Label loop_over_ktiles;
if (m_do_accumulation) {
auto reg_C1_addr = reg_A1_addr; // reuse reg_A1_addr
#if 0
mov(reg_B_stride, 64);
tileloadd(tmmC00, ptr[reg_C_addr + reg_B_stride]);
tileloadd(tmmC01, ptr[reg_C_addr + reg_B_stride + 1024]);
tileloadd(tmmC10, ptr[reg_C_addr + reg_B_stride + 1024 * 2]);
tileloadd(tmmC11, ptr[reg_C_addr + reg_B_stride + 1024 * 3]);
#else
tileloadd(tmmC00, ptr[reg_C_addr + reg_C_stride]);
tileloadd(tmmC01, ptr[reg_C_addr + reg_C_stride + 64]);
lea(reg_C1_addr, ptr[reg_C_addr + reg_C_stride * 8]);
lea(reg_C1_addr, ptr[reg_C1_addr + reg_C_stride * 8]);
tileloadd(tmmC10, ptr[reg_C1_addr + reg_C_stride]);
tileloadd(tmmC11, ptr[reg_C1_addr + reg_C_stride + 64]);
#endif
} else {
tilezero(tmmC00);
tilezero(tmmC01);
tilezero(tmmC10);
tilezero(tmmC11);
}
mov(reg_B_stride, reinterpret_cast<uintptr_t>(&m_ktiles));
mov(reg_ktiles, ptr[reg_B_stride + 0]);
mov(reg_B_stride, 64);
mov(reg_A_stride, 64);
auto const_A_steps = 64;
align(64, false);
L(loop_over_ktiles);
// for (int k = 0; k < Ktiles; k++) {
tileloadd(tmmA0, ptr[reg_A_addr + reg_A_stride]);
lea(reg_A_addr, ptr[reg_A_addr + 1024]);
tileloadd(tmmB0, ptr[reg_B_addr + reg_B_stride]);
lea(reg_B_addr, ptr[reg_B_addr + 1024]);
tdpbf16ps(tmmC00, tmmA0, tmmB0);
tileloadd(tmmA1, ptr[reg_A_addr + reg_A_stride]);
tdpbf16ps(tmmC10, tmmA1, tmmB0);
tileloadd(tmmB1, ptr[reg_B_addr + reg_B_stride]);
// prefetch [num_Ktiles X 256] bytes
tdpbf16ps(tmmC01, tmmA0, tmmB1);
tdpbf16ps(tmmC11, tmmA1, tmmB1);
//}
lea(reg_A_addr, ptr[reg_A_addr + 1024]);
lea(reg_B_addr, ptr[reg_B_addr + 1024]);
dec(reg_ktiles);
jnz(loop_over_ktiles, T_NEAR);
#if 0
tilestored(ptr[reg_C_addr + reg_B_stride], tmmC00);
tilestored(ptr[reg_C_addr + reg_B_stride + 1024], tmmC01);
tilestored(ptr[reg_C_addr + reg_B_stride + 1024 * 2], tmmC10);
tilestored(ptr[reg_C_addr + reg_B_stride + 1024 * 3], tmmC11);
#else
tilestored(ptr[reg_C_addr + reg_C_stride], tmmC00);
tilestored(ptr[reg_C_addr + reg_C_stride + 64], tmmC01);
lea(reg_C_addr, ptr[reg_C_addr + reg_C_stride * 8]);
lea(reg_C_addr, ptr[reg_C_addr + reg_C_stride * 8]);
tilestored(ptr[reg_C_addr + reg_C_stride], tmmC10);
tilestored(ptr[reg_C_addr + reg_C_stride + 64], tmmC11);
#endif
ret();
}
void prepareA(tensor2D<ov::bfloat16>& A, tensor2D<ov::bfloat16>& A2) {
// make A blocked in
int M = A.dims[0];
int K = A.dims[1];
auto strideA = A.stride;
// ASSERT((M % 32) == 0); ASSERT(K == m_K);
A2.resize(M, K, true);
auto* src = reinterpret_cast<uint8_t*>(&A[0]);
auto* dst = reinterpret_cast<uint8_t*>(&A2[0]);
auto make_tile = [](uint8_t* src, int stride, uint8_t* dst) {
for (int m = 0; m < 16; m++, src += stride, dst += 64) {
memcpy(dst, src, 64);
}
};
for (int m = 0; m < M; m += 32, src += 32 * strideA) {
for (int k = 0; k < K; k += 32) {
// 16x32 tile1 tile3
// 16x32 tile2 tile4
make_tile(src + k * sizeof(ov::bfloat16), strideA, dst);
dst += 1024;
make_tile(src + k * sizeof(ov::bfloat16) + 16 * strideA, strideA, dst);
dst += 1024;
}
}
}
void run(tensor2D<ov::bfloat16>& A, tensor2D<float>& C) {
TileConfigScope tcfg(m_tile_cfg);
// loop order
int M = A.dims[0];
int K = A.dims[1];
// ASSERT((M%32) == 0); ASSERT(K == m_K); ASSERT(C.dims[0] == M); ASSERT(C.dims[1] == m_N);
auto strideA = A.stride;
auto strideC = C.stride;
auto* pA = reinterpret_cast<uint8_t*>(&A[0]);
auto* pC = reinterpret_cast<uint8_t*>(&C[0]);
for (int m = 0; m < M; m += 32, pA += m_ktiles * 2048, pC += 32 * strideC) {
auto* pB = reinterpret_cast<uint8_t*>(&m_Weight[0]);
for (int n = 0; n < m_N; n += 32, pB += m_ktiles * 2048) {
(*this)(pA, strideA, pB, pC + n * sizeof(float), strideC);
}
}
}
};
void test_L2_blocked(int M, int K, int N) {
tensor2D<ov::bfloat16> A(M, K,
true); // ensure stride of A matrix is multiple of
// cache line, which is vital to performance.
tensor2D<ov::bfloat16> B(K, N, true);
tensor2D<float> C0(M, N, true); // reference result
tensor2D<float> C1(M, N, true); // reference result
Linear32x32_AMX_blockedA jit_max(B);
tensor2D<ov::bfloat16> A1;
{
perf_log plog;
plog.tag("prepareA", M, K, N);
for (int r = 0; r < 10; r++)
plog([&]() { jit_max.prepareA(A, A1); });
}
C0 = 0;
matmul(A, B, C0);
jit_max.run(A1, C1);
std::string acc;
const char* acc_color = nullptr;
if (C0 == C1) {
acc = "[PASS]";
} else {
if (std::getenv("SHOW_ERR")) {
std::cout << "============= A ================ " << std::endl;
std::cout << A << std::endl;
std::cout << "============= B ================ " << std::endl;
std::cout << B << std::endl;
logger() << C0 << std::endl;
logger() << C1 << std::endl;
}
acc = "[FAIL]";
acc_color = "1;31";
}
perf_log plog({
{PERF_TYPE_HARDWARE, PERF_COUNT_HW_CPU_CYCLES, "HW_CYCLES"},
//{PERF_TYPE_RAW, 0x08d1, "L1_MISS"},
//{PERF_TYPE_RAW, 0x04b2, "PORT_2_3_10"},
//{PERF_TYPE_RAW, 0x01b2, "PORT_0"},
//{PERF_TYPE_RAW, 0x02b2, "PORT_1"},
//{PERF_TYPE_RAW, 0x10b2, "PORT_4_9"},
//{PERF_TYPE_RAW, 0x20b2, "PORT_5_11"},
//{PERF_TYPE_RAW, 0x40b2, "PORT_6"},
//{PERF_TYPE_RAW, 0x80b2, "PORT_7_8"},
{PERF_TYPE_RAW, 0x21a6, "BOUND_ON_LOADS"},
{PERF_TYPE_RAW, 0x019c,"IDQ_UOPS_NOT_DELIVERED"},
{PERF_TYPE_RAW, 0x10d1, "L2_MISS"},
});
plog.tag(__func__, M, K, N, acc);
plog.color(acc_color);
#pragma omp parallel
{
tensor2D<ov::bfloat16> A2 = A1.clone();
tensor2D<float> C2(M, N, true); // reference result
Linear32x32_AMX_blockedA jit_amx2(B);
jit_amx2.run(A2, C2);
jit_amx2.run(A2, C2);
#pragma omp barrier
plog(
[&]() {
for (int r = 0; r < 10; r++) {
jit_amx2.run(A2, C2);
}
},
10 * 2.0 * M * N * K // OPS per call per core);
);
}
}
int main() {
MSRConfig _msr;
bool initAMX = initXTILE();
test_L2(256, 256, 256, false);
test_L2(256, 256, 256, true);
test_L2_blocked(256, 256, 256);
return 0;
printf(":::::::::: AMX Usage on different M_K_N config ::::::::::\n");
test_L2(128, 256, 128); // GOps/sec 1192.21 Ops/cycle 685
test_L2(128, 256, 256); // GOps/sec 1218.87 Ops/cycle 710 <======== best
test_L2(128, 256, 512); // GOps/sec 1286.36 Ops/cycle 711 <======== best
test_L2(256, 256, 128); // GOps/sec 1200.93 Ops/cycle 697
test_L2(256, 256, 256); // GOps/sec 1299.47 Ops/cycle 719 <======== best
test_L2(256, 256, 512); // GOps/sec 1262.48 Ops/cycle 702
test_L2(512, 256, 256); // GOps/sec 1293.38 Ops/cycle 713 <======== best
test_L2(512, 256, 512); // GOps/sec 1136.08 Ops/cycle 628
return 0;
}