-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathamx-ddr.cpp
444 lines (382 loc) · 15.5 KB
/
amx-ddr.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
#include "jit.hpp"
#include <vector>
#include "dnnl_kernels.hpp"
#if !defined(XBYAK64_GCC)
#error NOT SUPPORTED
#endif
#include "timeit.hpp"
#ifdef _WIN32
#include <intrin.h>
#else
#include <x86intrin.h>
#endif
#include <stdlib.h>
#include <omp.h>
#include "bf16.hpp"
// #include "kernels_avx512.hpp"
#include "kernels_amx.hpp"
#include "tensor2D.hpp"
static tensor2D<ov::bfloat16> repack_weights(tensor2D<ov::bfloat16>& Bt) {
int N = Bt.dims[0];
int K = Bt.dims[1];
tensor2D<ov::bfloat16> BPacked(K * N, 1, true);
for (int n = 0, i = 0; n < N; n += 32) {
for (int k = 0; k < K; k += 32) {
amx_kernel::functional::transpose_epi32_16x16(&BPacked[i * 16 * 32], &Bt(n, k), Bt.stride);
i++;
amx_kernel::functional::transpose_epi32_16x16(&BPacked[i * 16 * 32], &Bt(n + 16, k), Bt.stride);
i++;
}
}
return BPacked;
}
//================================================================================================================
EnvVar NOSWPF("NOSWPF", 0);
class Linear32x32_AMXL2_swpfB : public jit_generator {
public:
TileConfig m_tile_cfg;
int64_t m_ktiles;
int m_BM; // blockM: L2-cache kernel
int m_BK; // blockK: L2-cache kernel
int m_BN; // blockN: L2-cache kernel
bool m_do_accumulation;
bool m_is_C_blocked;
int m_prefetch_Blines;
// both A & B data will be prefetched from memory for next kernel invokation
// and the prefetches are evenly distributed into each kernel.
//
// we first tackle the prefetching of B, because each time
// we will call it with a new B, and run() will have to prefetch new B
// for next round, so next B is also of size (KxN) elements
// distributes into (BM/32)*(BN/32) kernels:
// each kernel has (BK/32) iterations, thus each kernel iteration
// need to prefetch (BKxBN)/(BMxBNxBK/32768) = 32768/BM elements
// which is 1024/BM cache lines, this has to be determined at
// code-generation time. with BM=256, this is only 4.
//
Linear32x32_AMXL2_swpfB(int BM = 256, int BK = 256, int BN = 256, bool do_accumulation = false, bool is_C_blocked = false) : m_BM(BM), m_BK(BK), m_BN(BN), m_do_accumulation(do_accumulation), m_is_C_blocked(is_C_blocked) {
// B: [K, N]
m_ktiles = m_BK / 32;
// prefetch block B requires
m_prefetch_Blines = 32768 * sizeof(ov::bfloat16) / 64 / m_BM;
if (NOSWPF) {
m_prefetch_Blines = 0;
}
create_kernel("Linear32x32_AMXL2_swpfB");
m_tile_cfg.reset(1, 0,
{
{16, 64}, // C:0
{16, 64}, // C:1
{16, 64}, // C:2
{16, 64}, // C:3
{16, 64}, // A0:4
{16, 64}, // A1:5
{16, 64}, // B0:6
{16, 64}, // B1:7
});
}
// to save push/pop: do not use `abi_save_gpr_regs`
Xbyak::Reg64 reg_A_addr = abi_param1;
Xbyak::Reg64 reg_A_stride = abi_param2;
Xbyak::Reg64 reg_B_addr = abi_param3;
Xbyak::Reg64 reg_C_addr = abi_param4;
Xbyak::Reg64 reg_C_stride = abi_param5;
Xbyak::Reg64 reg_prefetch = abi_param6; // prefetch B
Xbyak::Reg64 reg_ktiles = rax;
Xbyak::Reg64 reg_B_stride = r10;
Xbyak::Reg64 reg_A1_addr = r11;
Xbyak::Tmm tmmC00 = tmm0;
Xbyak::Tmm tmmC10 = tmm1;
Xbyak::Tmm tmmC01 = tmm2;
Xbyak::Tmm tmmC11 = tmm3;
Xbyak::Tmm tmmA0 = tmm4;
Xbyak::Tmm tmmA1 = tmm5;
Xbyak::Tmm tmmB0 = tmm6;
Xbyak::Tmm tmmB1 = tmm7;
void generate() {
auto num_PFB = m_prefetch_Blines;
int cur_PFB = 0;
/*
B: 1x2 tiles
A : 2x1 tiles C: 2x2 tiles
*/
Xbyak::Label loop_over_ktiles;
if (m_do_accumulation) {
auto reg_C1_addr = reg_A1_addr; // reuse reg_A1_addr
#if 0
mov(reg_B_stride, 64);
tileloadd(tmmC00, ptr[reg_C_addr + reg_B_stride]);
tileloadd(tmmC01, ptr[reg_C_addr + reg_B_stride + 1024]);
tileloadd(tmmC10, ptr[reg_C_addr + reg_B_stride + 1024 * 2]);
tileloadd(tmmC11, ptr[reg_C_addr + reg_B_stride + 1024 * 3]);
#else
tileloadd(tmmC00, ptr[reg_C_addr + reg_C_stride]);
tileloadd(tmmC01, ptr[reg_C_addr + reg_C_stride + 64]);
lea(reg_C1_addr, ptr[reg_C_addr + reg_C_stride * 8]);
lea(reg_C1_addr, ptr[reg_C1_addr + reg_C_stride * 8]);
tileloadd(tmmC10, ptr[reg_C1_addr + reg_C_stride]);
tileloadd(tmmC11, ptr[reg_C1_addr + reg_C_stride + 64]);
#endif
} else {
tilezero(tmmC00);
tilezero(tmmC01);
tilezero(tmmC10);
tilezero(tmmC11);
}
mov(reg_B_stride, reinterpret_cast<uintptr_t>(&m_ktiles));
mov(reg_ktiles, ptr[reg_B_stride + 0]);
lea(reg_A1_addr, ptr[reg_A_addr + reg_A_stride * 8]);
lea(reg_A1_addr, ptr[reg_A1_addr + reg_A_stride * 8]);
mov(reg_B_stride, 64);
auto const_A_steps = 64;
align(64, false);
L(loop_over_ktiles);
// for (int k = 0; k < Ktiles; k++) {
tileloadd(tmmA0, ptr[reg_A_addr + reg_A_stride]);
tileloadd(tmmB0, ptr[reg_B_addr + reg_B_stride]);
lea(reg_B_addr, ptr[reg_B_addr + 1024]);
tdpbf16ps(tmmC00, tmmA0, tmmB0);
if (cur_PFB < num_PFB) {
prefetcht2(ptr[reg_prefetch + cur_PFB * 64]);
cur_PFB++;
}
tileloadd(tmmA1, ptr[reg_A1_addr + reg_A_stride]);
tdpbf16ps(tmmC10, tmmA1, tmmB0);
if (cur_PFB < num_PFB) {
prefetcht2(ptr[reg_prefetch + cur_PFB * 64]);
cur_PFB++;
}
tileloadd(tmmB1, ptr[reg_B_addr + reg_B_stride]);
// prefetch [num_Ktiles X 256] bytes
tdpbf16ps(tmmC01, tmmA0, tmmB1);
if (cur_PFB < num_PFB) {
prefetcht2(ptr[reg_prefetch + cur_PFB * 64]);
cur_PFB++;
}
tdpbf16ps(tmmC11, tmmA1, tmmB1);
// prefetch next sub-block B matrix
if (cur_PFB < num_PFB) {
for (int pi = cur_PFB; pi < num_PFB; pi++) {
prefetcht2(ptr[reg_prefetch + pi * 64]);
}
}
lea(reg_prefetch, ptr[reg_prefetch + 64 * num_PFB]);
//}
lea(reg_A_addr, ptr[reg_A_addr + const_A_steps]);
lea(reg_A1_addr, ptr[reg_A1_addr + const_A_steps]);
lea(reg_B_addr, ptr[reg_B_addr + 1024]);
dec(reg_ktiles);
jnz(loop_over_ktiles, T_NEAR);
#if 0
tilestored(ptr[reg_C_addr + reg_B_stride], tmmC00);
tilestored(ptr[reg_C_addr + reg_B_stride + 1024], tmmC01);
tilestored(ptr[reg_C_addr + reg_B_stride + 1024 * 2], tmmC10);
tilestored(ptr[reg_C_addr + reg_B_stride + 1024 * 3], tmmC11);
#else
tilestored(ptr[reg_C_addr + reg_C_stride], tmmC00);
tilestored(ptr[reg_C_addr + reg_C_stride + 64], tmmC01);
lea(reg_C_addr, ptr[reg_C_addr + reg_C_stride * 8]);
lea(reg_C_addr, ptr[reg_C_addr + reg_C_stride * 8]);
tilestored(ptr[reg_C_addr + reg_C_stride], tmmC10);
tilestored(ptr[reg_C_addr + reg_C_stride + 64], tmmC11);
#endif
ret();
}
// run L2 cache blocking kernel with size:
// [BM, BK]*[BK, BN] => [BM, BN]
//
void run(uint8_t* pA, int strideA, // A
uint8_t* pB, int strideB, // strideB is special
uint8_t* pC, int strideC, // C
uint8_t* prefetch_B // prefetch B
) {
auto prefetch_step = m_prefetch_Blines * 64 * m_ktiles;
for (int m = 0; m < m_BM; m += 32, pA += 32 * strideA, pC += 32 * strideC) {
auto* pB1 = pB;
for (int n = 0; n < m_BN; n += 32, pB1 += strideB, prefetch_B += prefetch_step) {
(*this)(pA, strideA, pB1, pC + n * sizeof(float), strideC, prefetch_B);
}
}
}
};
void clr_cache() {
thread_local std::vector<uint8_t> big_buffer(1024 * 1024 * 2, 0);
memset(&big_buffer[0], 1, big_buffer.size());
load_prefetch_L2(&big_buffer[0], big_buffer.size());
};
int fix_stride(int stride) {
// according to [Tip6](https://www.intel.com/content/www/us/en/developer/articles/technical/a-simple-example-to-measure-the-performance-of-an-intel-mkl-function.html)
int best_stride_cache_lines = (stride + 63) / 64;
if ((best_stride_cache_lines % 1) == 0)
best_stride_cache_lines++;
return best_stride_cache_lines * 64;
}
EnvVar FLAGX("FLAGX",0);
void test_prefetch_B(int M, int K, int N, int num_blkB = 160) {
int nthr = get_nthr();
int best_pad_K = fix_stride(K * sizeof(ov::bfloat16)) / sizeof(ov::bfloat16);
tensor2D<ov::bfloat16> A_padded(M, best_pad_K, true);
tensor2D<ov::bfloat16> A(M, K, &A_padded[0], A_padded.stride);
tensor2D<ov::bfloat16> B(K, N, true);
tensor2D<float> C0(M, N, true); // reference result
tensor2D<float> C1(M, N, true); // reference result
Linear32x32_AMXL2_swpfB jit_amx(M, K, N, true);
auto Bt = B.Tr();
auto B1 = repack_weights(Bt);
C0 = 0;
C1 = 0;
matmul(A, B, C0);
auto strideB = (K / 32) * 2048;
{
TileConfigScope tcfg(jit_amx.m_tile_cfg);
jit_amx.run(reinterpret_cast<uint8_t*>(&A[0]), A.stride, //
reinterpret_cast<uint8_t*>(&B1[0]), strideB, //
reinterpret_cast<uint8_t*>(&C1[0]), C1.stride, //
reinterpret_cast<uint8_t*>(&B1[0]));
}
std::string acc;
const char* acc_color = nullptr;
if (C0 == C1) {
acc = "[PASS]";
} else {
if (std::getenv("SHOW_ERR")) {
std::cout << "============= A ================ " << std::endl;
std::cout << A << std::endl;
std::cout << "============= B ================ " << std::endl;
std::cout << B << std::endl;
logger() << C0 << std::endl;
logger() << C1 << std::endl;
}
acc = "[FAIL]";
acc_color = "1;31";
}
perf_log plog({
{PERF_TYPE_HARDWARE, PERF_COUNT_HW_CPU_CYCLES, "HW_CYCLES"},
{PERF_TYPE_RAW, 0x21a6, "BOUND_ON_LOADS"},
//{PERF_TYPE_RAW, 0x019c,"IDQ_UOPS_NOT_DELIVERED"},
{PERF_TYPE_RAW, 0x10d1, "L2_MISS"},
//{PERF_TYPE_RAW, 0x20d1, "L3_MISS"},
//{PERF_TYPE_RAW, 0x04d2, "XSNP_FWD"},
//{PERF_TYPE_RAW, 0x2224, "RFO_MISS"},
//{PERF_TYPE_RAW, 0x3024, "L2.HWPF_MISS"},
//{PERF_TYPE_RAW, 0x04a3, "STALLS_TOTAL"},
//{PERF_TYPE_RAW, 0x06a3, "STALLS_L3_MISS"},
{PERF_TYPE_RAW, 0x05a3, "STALLS_L2_MISS"},
//{PERF_TYPE_RAW, 0x0480, "ICACHE_DATA.STALLS"},
//{PERF_TYPE_RAW, 0x0483, "ICACHE_TAG.STALLS"},
});
plog.reserve(512);
plog.tag("cache-COLD", M, K, N, acc);
plog.color(acc_color);
#pragma omp parallel
{
tensor2D<ov::bfloat16> A2_padded(M, best_pad_K, true);
tensor2D<ov::bfloat16> A2(M, K, &A2_padded[0], A2_padded.stride);
Linear32x32_AMXL2_swpfB jit_amx(M, K, N, true);
int ithr = omp_get_thread_num();
tensor2D<float> C2(M, N, true); // reference result
TileConfigScope tcfg(jit_amx.m_tile_cfg);
// we will clone many B1 to test if prefetch works
std::vector<tensor2D<ov::bfloat16>> B1s;
for (int i = 0; i < num_blkB; i++) {
B1s.emplace_back(B1.clone());
}
#pragma omp barrier
if (nthr == 1) {
tensor2D<ov::bfloat16>& blockB = B1s[0];
for(int i = 0; i < (int)(FLAGX); i++) {
plog([&]() {
jit_amx.run(reinterpret_cast<uint8_t*>(&A2[0]), A2.stride, //
reinterpret_cast<uint8_t*>(&blockB[0]), strideB, //
reinterpret_cast<uint8_t*>(&C2[0]), C2.stride, //
reinterpret_cast<uint8_t*>(&blockB[0]));
},
2.0 * M * N * K // OPS per call per core
);
}
}
if (nthr == 1) {
clr_cache();
clr_cache();
clr_cache();
clr_cache();
for (int r = 0; r < (int)(FLAGX); r++) {
tensor2D<ov::bfloat16>& blockB = B1s[0];
auto r1 = r + 1;
tensor2D<ov::bfloat16>& blockB1 = B1s[r1 < B1s.size() ? r1 : r];
plog(
[&]() {
jit_amx.run(reinterpret_cast<uint8_t*>(&A2[0]), A2.stride, //
reinterpret_cast<uint8_t*>(&blockB[0]), strideB, //
reinterpret_cast<uint8_t*>(&C2[0]), C2.stride, //
reinterpret_cast<uint8_t*>(&blockB1[0]));
},
2.0 * M * N * K // OPS per call per core
);
}
}
clr_cache();
clr_cache();
clr_cache();
clr_cache();
#pragma omp barrier
plog(
[&]() {
for (int r = 0; r < B1s.size(); r++) {
tensor2D<ov::bfloat16>& blockB = B1s[r];
auto r1 = r + 1;
tensor2D<ov::bfloat16>& blockB1 = B1s[r1 < B1s.size() ? r1 : r];
jit_amx.run(reinterpret_cast<uint8_t*>(&A2[0]), A2.stride, //
reinterpret_cast<uint8_t*>(&blockB[0]), strideB, //
reinterpret_cast<uint8_t*>(&C2[0]), C2.stride, //
reinterpret_cast<uint8_t*>(&blockB1[0]));
}
},
(B1s.size()) * 2.0 * M * N * K // OPS per call per core
);
// add separator
if (ithr == 0) plog();
#pragma omp barrier
plog(
[&]() {
for (int r = 0; r < B1s.size(); r++) {
tensor2D<ov::bfloat16>& blockB = B1s[r];
auto r1 = r + 1;
tensor2D<ov::bfloat16>& blockB1 = B1s[r1 < B1s.size() ? r1 : r];
jit_amx.run(reinterpret_cast<uint8_t*>(&A2[0]), A2.stride, //
reinterpret_cast<uint8_t*>(&blockB[0]), strideB, //
reinterpret_cast<uint8_t*>(&C2[0]), C2.stride, //
reinterpret_cast<uint8_t*>(&blockB1[0]));
}
},
(B1s.size()) * 2.0 * M * N * K // OPS per call per core
);
// add separator
if (ithr == 0) plog();
#pragma omp barrier
plog(
[&]() {
for (int r = 0; r < B1s.size(); r++) {
tensor2D<ov::bfloat16>& blockB = B1s[r];
auto r1 = r + 1;
tensor2D<ov::bfloat16>& blockB1 = B1s[r1 < B1s.size() ? r1 : r];
jit_amx.run(reinterpret_cast<uint8_t*>(&A2[0]), A2.stride, //
reinterpret_cast<uint8_t*>(&blockB[0]), strideB, //
reinterpret_cast<uint8_t*>(&C2[0]), C2.stride, //
reinterpret_cast<uint8_t*>(&blockB1[0]));
}
},
(B1s.size()) * 2.0 * M * N * K // OPS per call per core
);
}
}
int main() {
MSRConfig _msr;
bool initAMX = initXTILE();
// running 56 cores
test_prefetch_B(256, 256, 256);
test_prefetch_B(256, 256, 256);
//test_prefetch_B(256, 256, 384); // 579 1040
// test_prefetch_B(256, 256, 512); // 535 1000
return 0;
}