-
-
Notifications
You must be signed in to change notification settings - Fork 3.5k
/
Copy pathmetrics.py
221 lines (185 loc) · 5.81 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
"""Model validation metrics."""
import numpy as np
from ..metrics import ap_per_class
def fitness(x):
"""Calculates model fitness as a weighted sum of 8 metrics, where `x` is an array of shape [N, 8]."""
w = [0.0, 0.0, 0.1, 0.9, 0.0, 0.0, 0.1, 0.9]
return (x[:, :8] * w).sum(1)
def ap_per_class_box_and_mask(
tp_m,
tp_b,
conf,
pred_cls,
target_cls,
plot=False,
save_dir=".",
names=(),
):
"""
Args:
tp_b: tp of boxes.
tp_m: tp of masks.
other arguments see `func: ap_per_class`.
"""
results_boxes = ap_per_class(
tp_b, conf, pred_cls, target_cls, plot=plot, save_dir=save_dir, names=names, prefix="Box"
)[2:]
results_masks = ap_per_class(
tp_m, conf, pred_cls, target_cls, plot=plot, save_dir=save_dir, names=names, prefix="Mask"
)[2:]
return {
"boxes": {
"p": results_boxes[0],
"r": results_boxes[1],
"ap": results_boxes[3],
"f1": results_boxes[2],
"ap_class": results_boxes[4],
},
"masks": {
"p": results_masks[0],
"r": results_masks[1],
"ap": results_masks[3],
"f1": results_masks[2],
"ap_class": results_masks[4],
},
}
class Metric:
"""Represents model evaluation metrics including precision, recall, F1 score, and average precision (AP) values."""
def __init__(self) -> None:
"""Initializes Metric class attributes for precision, recall, F1 score, AP values, and AP class indices."""
self.p = [] # (nc, )
self.r = [] # (nc, )
self.f1 = [] # (nc, )
self.all_ap = [] # (nc, 10)
self.ap_class_index = [] # (nc, )
@property
def ap50(self):
"""
[email protected] of all classes.
Return:
(nc, ) or [].
"""
return self.all_ap[:, 0] if len(self.all_ap) else []
@property
def ap(self):
"""[email protected]:0.95
Return:
(nc, ) or [].
"""
return self.all_ap.mean(1) if len(self.all_ap) else []
@property
def mp(self):
"""
Mean precision of all classes.
Return:
float.
"""
return self.p.mean() if len(self.p) else 0.0
@property
def mr(self):
"""
Mean recall of all classes.
Return:
float.
"""
return self.r.mean() if len(self.r) else 0.0
@property
def map50(self):
"""
Mean [email protected] of all classes.
Return:
float.
"""
return self.all_ap[:, 0].mean() if len(self.all_ap) else 0.0
@property
def map(self):
"""
Mean [email protected]:0.95 of all classes.
Return:
float.
"""
return self.all_ap.mean() if len(self.all_ap) else 0.0
def mean_results(self):
"""Mean of results, return mp, mr, map50, map."""
return (self.mp, self.mr, self.map50, self.map)
def class_result(self, i):
"""Class-aware result, return p[i], r[i], ap50[i], ap[i]."""
return (self.p[i], self.r[i], self.ap50[i], self.ap[i])
def get_maps(self, nc):
"""Calculates mean average precisions (mAPs) for each class; `nc`: num of classes; returns array of mAPs per
class.
"""
maps = np.zeros(nc) + self.map
for i, c in enumerate(self.ap_class_index):
maps[c] = self.ap[i]
return maps
def update(self, results):
"""
Args:
results: tuple(p, r, ap, f1, ap_class).
"""
p, r, all_ap, f1, ap_class_index = results
self.p = p
self.r = r
self.all_ap = all_ap
self.f1 = f1
self.ap_class_index = ap_class_index
class Metrics:
"""Metric for boxes and masks."""
def __init__(self) -> None:
"""Initializes the Metrics class with separate Metric instances for boxes and masks."""
self.metric_box = Metric()
self.metric_mask = Metric()
def update(self, results):
"""
Args:
results: Dict{'boxes': Dict{}, 'masks': Dict{}}.
"""
self.metric_box.update(list(results["boxes"].values()))
self.metric_mask.update(list(results["masks"].values()))
def mean_results(self):
"""Calculates and returns the sum of mean results from 'metric_box' and 'metric_mask'."""
return self.metric_box.mean_results() + self.metric_mask.mean_results()
def class_result(self, i):
"""Combines and returns class-specific results from 'metric_box' and 'metric_mask' for class index 'i'."""
return self.metric_box.class_result(i) + self.metric_mask.class_result(i)
def get_maps(self, nc):
"""Returns combined mean Average Precision (mAP) scores for bounding boxes and masks for `nc` classes."""
return self.metric_box.get_maps(nc) + self.metric_mask.get_maps(nc)
@property
def ap_class_index(self):
"""Returns the AP class index, identical for both boxes and masks."""
return self.metric_box.ap_class_index
KEYS = [
"train/box_loss",
"train/seg_loss", # train loss
"train/obj_loss",
"train/cls_loss",
"metrics/precision(B)",
"metrics/recall(B)",
"metrics/mAP_0.5(B)",
"metrics/mAP_0.5:0.95(B)", # metrics
"metrics/precision(M)",
"metrics/recall(M)",
"metrics/mAP_0.5(M)",
"metrics/mAP_0.5:0.95(M)", # metrics
"val/box_loss",
"val/seg_loss", # val loss
"val/obj_loss",
"val/cls_loss",
"x/lr0",
"x/lr1",
"x/lr2",
]
BEST_KEYS = [
"best/epoch",
"best/precision(B)",
"best/recall(B)",
"best/mAP_0.5(B)",
"best/mAP_0.5:0.95(B)",
"best/precision(M)",
"best/recall(M)",
"best/mAP_0.5(M)",
"best/mAP_0.5:0.95(M)",
]