-
-
Notifications
You must be signed in to change notification settings - Fork 3.5k
/
Copy pathclearml_utils.py
174 lines (148 loc) · 7.6 KB
/
clearml_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
"""Main Logger class for ClearML experiment tracking."""
import glob
import re
from pathlib import Path
import numpy as np
import yaml
from ultralytics.utils.plotting import Annotator, colors
try:
import clearml
from clearml import Dataset, Task
assert hasattr(clearml, "__version__") # verify package import not local dir
except (ImportError, AssertionError):
clearml = None
def construct_dataset(clearml_info_string):
"""Load in a clearml dataset and fill the internal data_dict with its contents."""
dataset_id = clearml_info_string.replace("clearml://", "")
dataset = Dataset.get(dataset_id=dataset_id)
dataset_root_path = Path(dataset.get_local_copy())
# We'll search for the yaml file definition in the dataset
yaml_filenames = list(glob.glob(str(dataset_root_path / "*.yaml")) + glob.glob(str(dataset_root_path / "*.yml")))
if len(yaml_filenames) > 1:
raise ValueError(
"More than one yaml file was found in the dataset root, cannot determine which one contains "
"the dataset definition this way."
)
elif not yaml_filenames:
raise ValueError(
"No yaml definition found in dataset root path, check that there is a correct yaml file "
"inside the dataset root path."
)
with open(yaml_filenames[0]) as f:
dataset_definition = yaml.safe_load(f)
assert set(dataset_definition.keys()).issuperset({"train", "test", "val", "nc", "names"}), (
"The right keys were not found in the yaml file, make sure it at least has the following keys: ('train', 'test', 'val', 'nc', 'names')"
)
data_dict = {
"train": (
str((dataset_root_path / dataset_definition["train"]).resolve()) if dataset_definition["train"] else None
)
}
data_dict["test"] = (
str((dataset_root_path / dataset_definition["test"]).resolve()) if dataset_definition["test"] else None
)
data_dict["val"] = (
str((dataset_root_path / dataset_definition["val"]).resolve()) if dataset_definition["val"] else None
)
data_dict["nc"] = dataset_definition["nc"]
data_dict["names"] = dataset_definition["names"]
return data_dict
class ClearmlLogger:
"""
Log training runs, datasets, models, and predictions to ClearML.
This logger sends information to ClearML at app.clear.ml or to your own hosted server. By default, this information
includes hyperparameters, system configuration and metrics, model metrics, code information and basic data metrics
and analyses.
By providing additional command line arguments to train.py, datasets, models and predictions can also be logged.
"""
def __init__(self, opt, hyp):
"""
- Initialize ClearML Task, this object will capture the experiment
- Upload dataset version to ClearML Data if opt.upload_dataset is True.
Arguments:
opt (namespace) -- Commandline arguments for this run
hyp (dict) -- Hyperparameters for this run
"""
self.current_epoch = 0
# Keep tracked of amount of logged images to enforce a limit
self.current_epoch_logged_images = set()
# Maximum number of images to log to clearML per epoch
self.max_imgs_to_log_per_epoch = 16
# Get the interval of epochs when bounding box images should be logged
self.bbox_interval = opt.bbox_interval
self.clearml = clearml
self.task = None
self.data_dict = None
if self.clearml:
self.task = Task.init(
project_name=opt.project if opt.project != "runs/train" else "YOLOv3",
task_name=opt.name if opt.name != "exp" else "Training",
tags=["YOLOv3"],
output_uri=True,
reuse_last_task_id=opt.exist_ok,
auto_connect_frameworks={"pytorch": False},
# We disconnect pytorch auto-detection, because we added manual model save points in the code
)
# ClearML's hooks will already grab all general parameters
# Only the hyperparameters coming from the yaml config file
# will have to be added manually!
self.task.connect(hyp, name="Hyperparameters")
self.task.connect(opt, name="Args")
# Make sure the code is easily remotely runnable by setting the docker image to use by the remote agent
self.task.set_base_docker(
"ultralytics/yolov5:latest",
docker_arguments='--ipc=host -e="CLEARML_AGENT_SKIP_PYTHON_ENV_INSTALL=1"',
docker_setup_bash_script="pip install clearml",
)
# Get ClearML Dataset Version if requested
if opt.data.startswith("clearml://"):
# data_dict should have the following keys:
# names, nc (number of classes), test, train, val (all three relative paths to ../datasets)
self.data_dict = construct_dataset(opt.data)
# Set data to data_dict because wandb will crash without this information and opt is the best way
# to give it to them
opt.data = self.data_dict
def log_debug_samples(self, files, title="Debug Samples"):
"""
Log files (images) as debug samples in the ClearML task.
Arguments:
files (List(PosixPath)) a list of file paths in PosixPath format
title (str) A title that groups together images with the same values
"""
for f in files:
if f.exists():
it = re.search(r"_batch(\d+)", f.name)
iteration = int(it.groups()[0]) if it else 0
self.task.get_logger().report_image(
title=title, series=f.name.replace(it.group(), ""), local_path=str(f), iteration=iteration
)
def log_image_with_boxes(self, image_path, boxes, class_names, image, conf_threshold=0.25):
"""
Draw the bounding boxes on a single image and report the result as a ClearML debug sample.
Arguments:
image_path (PosixPath) the path the original image file
boxes (list): list of scaled predictions in the format - [xmin, ymin, xmax, ymax, confidence, class]
class_names (dict): dict containing mapping of class int to class name
image (Tensor): A torch tensor containing the actual image data
"""
if (
len(self.current_epoch_logged_images) < self.max_imgs_to_log_per_epoch
and self.current_epoch >= 0
and (self.current_epoch % self.bbox_interval == 0 and image_path not in self.current_epoch_logged_images)
):
im = np.ascontiguousarray(np.moveaxis(image.mul(255).clamp(0, 255).byte().cpu().numpy(), 0, 2))
annotator = Annotator(im=im, pil=True)
for i, (conf, class_nr, box) in enumerate(zip(boxes[:, 4], boxes[:, 5], boxes[:, :4])):
color = colors(i)
class_name = class_names[int(class_nr)]
confidence_percentage = round(float(conf) * 100, 2)
label = f"{class_name}: {confidence_percentage}%"
if conf > conf_threshold:
annotator.rectangle(box.cpu().numpy(), outline=color)
annotator.box_label(box.cpu().numpy(), label=label, color=color)
annotated_image = annotator.result()
self.task.get_logger().report_image(
title="Bounding Boxes", series=image_path.name, iteration=self.current_epoch, image=annotated_image
)
self.current_epoch_logged_images.add(image_path)