-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfixSimplify.ml
454 lines (378 loc) · 15.7 KB
/
fixSimplify.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
(*
* Copyright © 2009 The Regents of the University of California. All rights reserved.
*
* Permission is hereby granted, without written agreement and without
* license or royalty fees, to use, copy, modify, and distribute this
* software and its documentation for any purpose, provided that the
* above copyright notice and the following two paragraphs appear in
* all copies of this software.
*
* IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY
* FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
* ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN
* IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY
* OF SUCH DAMAGE.
*
* THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS
* ON AN "AS IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATION
* TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
*
*)
module BS = BNstats
module Co = Constants
module IM = Misc.IntMap
module C = FixConstraint
module P = Ast.Predicate
module E = Ast.Expression
module Sy = Ast.Symbol
module Kg = Kvgraph
module Su = Ast.Subst
module SM = Ast.Symbol.SMap
module SS = Ast.Symbol.SSet
open Misc.Ops
open Ast
let mydebug = false
(****************************************************************************)
(*********************************** Misc. **********************************)
(****************************************************************************)
let add_cm = List.fold_left (fun cm c -> IM.add (C.id_of_t c) c cm)
let find_cm = fun cm id -> IM.find id cm
let refas_of_k = fun k -> [C.Kvar (Su.empty, k)]
(****************************************************************************)
(************** Generic Simplification/Transformation API *******************)
(****************************************************************************)
module type SIMPLIFIER = sig
val simplify_ts: FixConstraint.t list -> FixConstraint.t list
end
(****************************************************************************)
(******************* Syntactic Simplification *******************************)
(****************************************************************************)
module Syntactic : SIMPLIFIER = struct
let defs_of_pred =
let rec dofp (em, pm) p = match p with
| Atom ((Var v, _), Eq, e), _
when not (P.is_tauto p) ->
Sy.SMap.add v e em, pm
| And [Imp ((Bexp (Var v1, _), _), p1), _;
Imp (p2, (Bexp (Var v2, _), _)), _], _
when v1 = v2 && p1 = p2 && not(P.is_tauto p) ->
em, Sy.SMap.add v1 p1 pm
| And ps, _ ->
List.fold_left dofp (em, pm) ps
| _ -> em, pm
in dofp (Sy.SMap.empty, Sy.SMap.empty)
let rec expr_apply_defs em pm expr =
let ef = expr_apply_defs em pm in
let pf = pred_apply_defs em pm in
match expr with
| Var v, _ when Sy.SMap.mem v em ->
Sy.SMap.find v em, true
| Var _, _ | Con _, _ | Bot, _ ->
expr, false
| App (v, es), _ ->
let _ = asserts (not (Sy.SMap.mem v em)) "binding for UF" in
es |> List.map ef
|> List.split
|> (fun (es', bs') -> (eApp (v, es'), List.fold_left (||) false bs'))
| Bin (e1, op, e2), _ ->
let e1', b1' = ef e1 in
let e2', b2' = ef e2 in
eBin (e1', op, e2'), (b1' || b2')
| Ite (p, e1, e2), _ ->
let p', b' = pf p in
let e1', b1' = ef e1 in
let e2', b2' = ef e2 in
eIte (p', e1', e2'), (b' || b1' || b2')
| Fld (v, e), _ ->
let e', b' = ef e in
eFld (v, e'), b'
| Cst (e, t), _ ->
let e', b' = ef e in
eCst (e', t), b'
| _ -> failwith "Pattern: expr_apply_defs"
and pred_apply_defs em pm pred =
let ef = expr_apply_defs em pm in
let pf = pred_apply_defs em pm in
match pred with
| And ps, _ ->
ps |> List.map pf
|> List.split
|> (fun (ps', bs') -> pAnd ps', List.exists id bs')
| Or ps, _ ->
ps |> List.map pf
|> List.split
|> (fun (ps', bs') -> pOr ps', List.exists id bs')
| Not p, _ ->
p |> pf
|> Misc.app_fst pNot
| Imp (p1, p2), _ ->
let p1', b1' = pf p1 in
let p2', b2' = pf p2 in
pImp (p1', p2'), b1' || b2'
| Bexp (Var v, _), _ when Sy.SMap.mem v pm ->
Sy.SMap.find v pm, true
| Bexp e, _ ->
e |> ef |> Misc.app_fst pBexp
| Atom (e1, brel, e2), _ ->
let e1', b1' = ef e1 in
let e2', b2' = ef e2 in
pAtom (e1', brel, e2'), b1' || b2'
| Forall (qs, p), _ ->
assertf "Forall in Simplify!"
| _ ->
pred, false
(* Why does this fixpointing terminate?
* close em, pm under substitution so that
for all x in dom(em), support(em(x)) \cap dom(em) = empty *)
(* Assume: em is well-formed,
* i.e. exists an ordering on vars of dom(em)
* x1 < x2 < ... < xn s.t. if xj \in em(xi) then xj < xi *)
let expr_apply_defs em fm e =
e |> Misc.fixpoint (expr_apply_defs em fm)
|> fst
let pred_apply_defs em fm p =
p |> Misc.fixpoint (pred_apply_defs em fm)
|> fst
|> simplify_pred
let subs_apply_defs em pm xes = List.map (Misc.app_snd (expr_apply_defs em pm)) xes
let print_em_pm t (em, pm) =
let id = t |> C.id_of_t in
let vv = t |> C.lhs_of_t |> C.vv_of_reft in
let vve = try Sy.SMap.find vv em with Not_found -> bot in
let vve' = expr_apply_defs em pm vve in
Co.bprintf mydebug "\nbodyp em map for %d\n" id ;
Sy.SMap.iter (fun x e -> Co.bprintf mydebug "%a -> %a\n" Sy.print x E.print e) em;
Co.bprintf mydebug "\nbodyp pm map for %d\n" id ;
Sy.SMap.iter (fun x p -> Co.bprintf mydebug "%a -> %a\n" Sy.print x P.print p) pm;
Co.bprintf mydebug "edef for vv %a = %a (simplified %a)\n" Sy.print vv E.print vve E.print vve'
let preds_kvars_of_env env =
Sy.SMap.fold begin fun x r (ps, env) ->
let vv = C.vv_of_reft r in
let xe = Ast.eVar x in
let t = C.sort_of_reft r in
let rps, rks = C.preds_kvars_of_reft r in
let ps' = List.map (fun p -> P.subst p vv xe) rps ++ ps in
let env' = (* match rks with [] -> env | _ -> *) Sy.SMap.add x (vv, t, rks) env in
ps', env'
end env ([], Sy.SMap.empty)
let simplify_kvar em pm (su, sym) =
su |> Su.to_list
|> subs_apply_defs em pm
|> Su.of_list
|> (fun su -> C.Kvar (su, sym))
let simplify_env em pm ks_env =
Sy.SMap.map begin fun (vv, t, ks) ->
ks |> List.map (simplify_kvar em pm) |> C.make_reft vv t
end ks_env
let simplify_grd em pm vv t p =
let _ = Co.bprintf mydebug "simplify_grd [1]: %a \n" P.print p in
let p = pred_apply_defs em pm p in
let _ = Co.bprintf mydebug "simplify_grd [2]: %a \n" P.print p in
begin try
Sy.SMap.find vv em
|> expr_apply_defs em pm
|> (fun vve -> pAnd [p; pAtom (eVar vv, Eq, vve)])
with Not_found -> p end
>> Co.bprintf mydebug "simplify_grd [3]: %a \n" P.print
let simplify_refa em pm = function
| C.Conc p -> C.Conc (pred_apply_defs em pm p)
| C.Kvar (xes, sym) -> simplify_kvar em pm (xes, sym)
(* API *)
let simplify_t c =
let id = c |> C.id_of_t in
let _ = Co.bprintf mydebug "============== Simplifying %d ============== \n"id in
let env_ps, ks_env = c |> C.env_of_t |> preds_kvars_of_env in
let l_ps, l_ks = c |> C.lhs_of_t |> C.preds_kvars_of_reft in
let vv, t = c |> C.lhs_of_t |> Misc.tmap2 (C.vv_of_reft, C.sort_of_reft) in
let bodyp = Ast.pAnd ([C.grd_of_t c] ++ l_ps ++ env_ps)
>> Co.bprintf mydebug "body_pred: %a \n" P.print in
let em, pm = defs_of_pred bodyp
>> print_em_pm c in
let senv = simplify_env em pm ks_env in
let sgrd = simplify_grd em pm vv t bodyp in
let slhs = l_ks |> List.map (simplify_kvar em pm) |> C.make_reft vv t in
let srhs = c |> C.rhs_of_t |> C.ras_of_reft |> List.map (simplify_refa em pm) |> C.make_reft vv t in
C.make_t senv sgrd slhs srhs (C.ido_of_t c) (C.tag_of_t c)
(* API *)
let simplify_ts cs =
cs |> List.map simplify_t
(* |> List.filter (not <.> C.is_tauto) *)
end
(****************************************************************************)
(*** Cone-of-Influence: Remove Constraints that don't reach constant-pred ***)
(****************************************************************************)
module Cone : SIMPLIFIER = struct
let simplify_ts cs =
let cm = add_cm IM.empty cs in
cs |> Kg.add Kg.empty
>> Kg.print_stats
|> Kg.cone_ids
|> List.map (find_cm cm)
end
(**************************************************************************)
(*** Direct-Dependencies: Remove non-data-dependent binders****************)
(*************************************************************************)
module WeakFixpoint : SIMPLIFIER = struct
let weaken_env c e =
C.make_t e
(C.grd_of_t c) (C.lhs_of_t c) (C.rhs_of_t c)
(C.ido_of_t c) (C.tag_of_t c)
let support_of_refa = function
| C.Conc p -> P.support p
| _ -> []
let support_of_reft =
Misc.flap support_of_refa <.> thd3
let rec data_cone env m n xs = match xs with
| _::_ -> let m' = List.fold_left (fun m' x -> Sy.SMap.add x n m') m xs in
xs |> Misc.map_partial (C.lookup_env env)
|> Misc.flap support_of_reft
|> Misc.filter (fun x -> not (Sy.SMap.mem x m))
|> data_cone env m' (n+1)
| [] -> m
let data_cone c =
(P.support (C.grd_of_t c))
|> (++) (support_of_reft (C.lhs_of_t c))
|> data_cone (C.env_of_t c) Sy.SMap.empty 0
let project_cone m x ((v,t,ras) as r) =
if Sy.SMap.mem x m then r else (v, t, List.filter C.is_conc_refa ras)
let simplify_t c =
c |> data_cone |> project_cone |> C.map_env
|> (fun f -> f (C.env_of_t c))
|> weaken_env c
let simplify_ts = Misc.map simplify_t
end
(****************************************************************************)
(***** Merge Write and Read of Kvar: A |- k and B, k |- C iff A,B |- C ****)
(****************************************************************************)
module EliminateK : SIMPLIFIER = struct
type t = { g : Kg.t;
cm : FixConstraint.t IM.t;
id : int; }
let print_k ppf k =
Format.fprintf ppf "%s" (C.refa_to_string k)
let empty =
{ g = Kg.empty;
cm = IM.empty;
id = 0; }
let add me cs =
let n, cs = C.add_ids me.id cs in
{ g = Kg.add me.g cs;
cm = add_cm me.cm cs;
id = n+1 }
let remove me (k, cs) =
{ g = Kg.remove me.g [k];
cm = List.map C.id_of_t cs |> List.fold_left (Misc.flip IM.remove) me.cm;
id = me.id; }
let of_ts = add empty
let to_ts = fun me -> me.cm |> IM.to_list |> List.map snd
let cs_of_k = fun f me k -> f me.g [k] |> List.map (find_cm me.cm)
(* Assume that k is written in (1) and read once in (2)
(1) env1, g1, k_v:l1 |- k[xi := ai]
(2) env2, g2, y:k[xi := bi] |- r2
Now, (1) equiv (1') and (2) equiv (2')
(1') env1, g1, #i:{v=ai}, k_v:l1 |- k[xi := #i]
(2') env2, g2, #i:{v=bi}, y:k2[xi := #i] |- r2
Next, we can merge (1') and (2')
(1'+2') env1 ++ env2, g1 && g2, #i:{v=ai}, #i:{v=bi}, y:l1 |- r2
Which simplifies to:
(1'+2') env1 ++ env2, g1 && g2 && {ai = bi}, y:l1 |- r2
*)
let meet_env env1 env2 xrs =
[env1; env2]
|> Misc.flap C.bindings_of_env
|> (++) xrs
|> C.env_of_bindings
let meet_sub su1 su2 =
[su1; su2]
|> Misc.flap Su.to_list
|> Misc.groupby fst
|> List.map (function [(x,e)] -> pEqual (eVar x, e)| [(_,e1);(_,e2)] -> pEqual (e1,e2))
|> pAnd
let merge_one me k (wc, rc) =
let env1, env2 = Misc.map_pair C.env_of_t (wc, rc) in
let g1, g2 = Misc.map_pair C.grd_of_t (wc, rc) in
let l1 = C.lhs_of_t wc in
let [C.Kvar(su1, k)] = C.rhs_of_t wc |> thd3 in
let su2, yr', l' = match Kg.k_reads me.g (C.id_of_t rc) (C.Kvar (Su.empty, k)) with
| [Kg.Bnd (y, su2)] -> su2, [(y,l1)], (C.lhs_of_t rc)
| [Kg.Lhs su2] -> su2, [], l1
| _ -> assertf "EliminateK.merge_one (k=%s, id=%d)" (Sy.to_string k) (C.id_of_t rc) in
let env' = meet_env env1 env2 yr' in
let g' = pAnd [g1; g2; meet_sub su1 su2] in
let r' = C.rhs_of_t rc in
C.make_t env' g' l' r' None (C.tag_of_t rc)
let eliminate me (k, wcs, rcs) =
me >> (fun _ -> Format.printf "EliminateK.eliminate %s \n" (C.refa_to_string k))
|> Misc.flip add (Misc.cross_product wcs rcs |> List.map (merge_one me k))
|> Misc.flip remove (k, wcs ++ rcs)
let select_ks me =
me.g
|> Kg.filter_kvars (Kg.is_single_wr me.g)
|> List.filter (Kg.is_single_rd me.g)
|> List.map (fun k -> (k, cs_of_k Kg.writes me k, cs_of_k Kg.reads me k))
|> List.filter (fun (_,wcs, rcs) -> Misc.disjoint wcs rcs)
>> (List.map fst3 <+> Format.printf "EliminateK.select_ks [OUT]: %a \n"
(Misc.pprint_many false "," print_k))
let simplify_ts cs =
let me = of_ts cs in
me |> select_ks
|> List.fold_left eliminate me
|> to_ts
end
(****************************************************************************)
(***** Copy Propagation *****************************************************)
(****************************************************************************)
module CopyProp : SIMPLIFIER = struct
let subst_theta =
List.map <.> Misc.app_snd <.> (fun (x, e) e' -> E.subst e' x e)
let subst_bind su x y ((v, t, ras) as r) =
if x = y then (v, t, []) else C.theta su r
let subst_cstr (x, e) c =
let su = Su.of_list [(x, e)] in
let env' = C.env_of_t c |> C.map_env (subst_bind su x) in
let grd' = C.grd_of_t c |> (fun p -> P.subst p x e) in
let lhs' = C.lhs_of_t c |> C.theta su in
let rhs' = C.rhs_of_t c |> C.theta su in
C.make_t env' grd' lhs' rhs' (C.ido_of_t c) (C.tag_of_t c)
let rec eliminate c = function
| (x, e) :: theta' when List.mem x (E.support e)
-> eliminate c theta'
| xe :: theta' (* x not in e *)
-> eliminate (subst_cstr xe c) (subst_theta xe theta')
| [] -> c
let rigid_vars c =
c |> C.kvars_of_t
|> List.map fst
|> Misc.flap Su.to_list
|> List.map fst
|> SS.of_list
let equalities_of_binding = function
| (x, (v, _, [C.Conc ( Atom ((Var v', _), Eq, e), _ )]))
when v = v' -> Some (x, e)
| (x, (v, _, [C.Conc ( Atom (e, Eq, (Var v', _)), _ )]))
when v = v' -> Some (x, e)
| _ -> None
let equalities_of_t c =
c |> C.env_of_t
|> (fun _ -> failwith "CopyProp.equalities_of_t") (* C.bindings_of_env *)
|> Misc.map_partial equalities_of_binding
let simplify_t c =
let ys = rigid_vars c in
c |> equalities_of_t
|> List.filter (fun (x,_) -> not (SS.mem x ys))
|> eliminate c
let simplify_ts = Misc.map simplify_t
end
(* API *)
let simplify_ts cs =
cs
|> Misc.filter (not <.> C.is_tauto)
|> ((not !Co.lfp) <?> BS.time "simplify 0" WeakFixpoint.simplify_ts)
|> BS.time "add ids 1" (C.add_ids 0)
|> snd
(* |> (!Co.copyprop <?> BS.time "simplify CP" CopyProp.simplify_ts) *)
|> (!Co.simplify_t <?> BS.time "simplify 1" Syntactic.simplify_ts) (* termination bug, tickled by C benchmarks *)
|> (!Co.simplify_t <?> BS.time "simplify 2" Cone.simplify_ts)
|> (!Co.simplify_t <?> BS.time "simplify 3" EliminateK.simplify_ts)