-
Notifications
You must be signed in to change notification settings - Fork 225
/
Copy pathtest_net.py
executable file
·213 lines (193 loc) · 7.31 KB
/
test_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
"""
Detection Testing Script.
This scripts reads a given config file and runs the evaluation.
It is an entry point that is made to evaluate standard models in FsDet.
In order to let one script support evaluation of many models,
this script contains logic that are specific to these built-in models and
therefore may not be suitable for your own project.
For example, your research project perhaps only needs a single "evaluator".
Therefore, we recommend you to use FsDet as an library and take
this file as an example of how to use the library.
You may want to write your own script with your datasets and other customizations.
"""
import json
import os
import time
import detectron2.utils.comm as comm
import numpy as np
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.data import MetadataCatalog
from detectron2.engine import launch
from fsdet.config import get_cfg, set_global_cfg
from fsdet.engine import DefaultTrainer, default_argument_parser, default_setup
from fsdet.evaluation import (
COCOEvaluator,
DatasetEvaluators,
LVISEvaluator,
PascalVOCDetectionEvaluator,
verify_results,
)
class Trainer(DefaultTrainer):
"""
We use the "DefaultTrainer" which contains a number pre-defined logic for
standard training workflow. They may not work for you, especially if you
are working on a new research project. In that case you can use the cleaner
"SimpleTrainer", or write your own training loop.
"""
@classmethod
def build_evaluator(cls, cfg, dataset_name, output_folder=None):
"""
Create evaluator(s) for a given dataset.
This uses the special metadata "evaluator_type" associated with each builtin dataset.
For your own dataset, you can simply create an evaluator manually in your
script and do not have to worry about the hacky if-else logic here.
"""
if output_folder is None:
output_folder = os.path.join(cfg.OUTPUT_DIR, "inference")
evaluator_list = []
evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type
if evaluator_type == "coco":
evaluator_list.append(
COCOEvaluator(dataset_name, cfg, True, output_folder)
)
if evaluator_type == "pascal_voc":
return PascalVOCDetectionEvaluator(dataset_name)
if evaluator_type == "lvis":
return LVISEvaluator(dataset_name, cfg, True, output_folder)
if len(evaluator_list) == 0:
raise NotImplementedError(
"no Evaluator for the dataset {} with the type {}".format(
dataset_name, evaluator_type
)
)
if len(evaluator_list) == 1:
return evaluator_list[0]
return DatasetEvaluators(evaluator_list)
class Tester:
def __init__(self, cfg):
self.cfg = cfg
self.model = Trainer.build_model(cfg)
self.check_pointer = DetectionCheckpointer(
self.model, save_dir=cfg.OUTPUT_DIR
)
self.best_res = None
self.best_file = None
self.all_res = {}
def test(self, ckpt):
self.check_pointer._load_model(self.check_pointer._load_file(ckpt))
print("evaluating checkpoint {}".format(ckpt))
res = Trainer.test(self.cfg, self.model)
if comm.is_main_process():
verify_results(self.cfg, res)
print(res)
if (self.best_res is None) or (
self.best_res is not None
and self.best_res["bbox"]["AP"] < res["bbox"]["AP"]
):
self.best_res = res
self.best_file = ckpt
print("best results from checkpoint {}".format(self.best_file))
print(self.best_res)
self.all_res["best_file"] = self.best_file
self.all_res["best_res"] = self.best_res
self.all_res[ckpt] = res
os.makedirs(
os.path.join(self.cfg.OUTPUT_DIR, "inference"), exist_ok=True
)
with open(
os.path.join(self.cfg.OUTPUT_DIR, "inference", "all_res.json"),
"w",
) as fp:
json.dump(self.all_res, fp)
def setup(args):
"""
Create configs and perform basic setups.
"""
cfg = get_cfg()
cfg.merge_from_file(args.config_file)
if args.opts:
cfg.merge_from_list(args.opts)
cfg.freeze()
set_global_cfg(cfg)
default_setup(cfg, args)
return cfg
def main(args):
cfg = setup(args)
if args.eval_only:
model = Trainer.build_model(cfg)
if args.eval_iter != -1:
# load checkpoint at specified iteration
ckpt_file = os.path.join(
cfg.OUTPUT_DIR, "model_{:07d}.pth".format(args.eval_iter - 1)
)
resume = False
else:
# load checkpoint at last iteration
ckpt_file = cfg.MODEL.WEIGHTS
resume = True
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
ckpt_file, resume=resume
)
res = Trainer.test(cfg, model)
if comm.is_main_process():
verify_results(cfg, res)
# save evaluation results in json
os.makedirs(
os.path.join(cfg.OUTPUT_DIR, "inference"), exist_ok=True
)
with open(
os.path.join(cfg.OUTPUT_DIR, "inference", "res_final.json"),
"w",
) as fp:
json.dump(res, fp)
return res
elif args.eval_all:
tester = Tester(cfg)
all_ckpts = sorted(tester.check_pointer.get_all_checkpoint_files())
for i, ckpt in enumerate(all_ckpts):
ckpt_iter = ckpt.split("model_")[-1].split(".pth")[0]
if ckpt_iter.isnumeric() and int(ckpt_iter) + 1 < args.start_iter:
# skip evaluation of checkpoints before start iteration
continue
if args.end_iter != -1:
if (
not ckpt_iter.isnumeric()
or int(ckpt_iter) + 1 > args.end_iter
):
# skip evaluation of checkpoints after end iteration
break
tester.test(ckpt)
return tester.best_res
elif args.eval_during_train:
tester = Tester(cfg)
saved_checkpoint = None
while True:
if tester.check_pointer.has_checkpoint():
current_ckpt = tester.check_pointer.get_checkpoint_file()
if (
saved_checkpoint is None
or current_ckpt != saved_checkpoint
):
saved_checkpoint = current_ckpt
tester.test(current_ckpt)
time.sleep(10)
else:
if comm.is_main_process():
print(
"Please specify --eval-only, --eval-all, or --eval-during-train"
)
if __name__ == "__main__":
args = default_argument_parser().parse_args()
if args.eval_during_train or args.eval_all:
args.dist_url = "tcp://127.0.0.1:{:05d}".format(
np.random.choice(np.arange(0, 65534))
)
print("Command Line Args:", args)
launch(
main,
args.num_gpus,
num_machines=args.num_machines,
machine_rank=args.machine_rank,
dist_url=args.dist_url,
args=(args,),
)