|
| 1 | +use crate::CellId; |
| 2 | +use crate::Instance; |
| 3 | +use aph_disjoint_set::DisjointSet; |
| 4 | +use geometry::bbox::Bbox; |
| 5 | +use geometry::rect::Rect; |
| 6 | +use std::collections::{HashMap, HashSet}; |
| 7 | +use std::hash::Hash; |
| 8 | + |
| 9 | +use crate::Element; |
| 10 | +use crate::{Cell, Library, Shape, TransformRef, Transformation}; |
| 11 | + |
| 12 | +/// Returns true if two shapes overlap on a flat plane, and false otherwise. |
| 13 | +fn intersect_shapes<L>(shape1: &Shape<L>, shape2: &Shape<L>) -> bool { |
| 14 | + let shape1_bbox: Rect = shape1.bbox_rect(); |
| 15 | + let shape2_bbox: Rect = shape2.bbox_rect(); |
| 16 | + shape1_bbox.intersection(shape2_bbox).is_some() |
| 17 | +} |
| 18 | + |
| 19 | +/// Returns a vector of all shapes from a given cell instance and its children |
| 20 | +/// with their coordinates transformed into the coordinate system of the instance's parent. |
| 21 | +fn flatten_instance<L>(inst: &Instance, lib: &Library<L>) -> Vec<Shape<L>> |
| 22 | +where |
| 23 | + L: Connectivity + Clone, |
| 24 | +{ |
| 25 | + let mut ret: Vec<Shape<L>> = vec![]; |
| 26 | + |
| 27 | + let cellid: CellId = inst.child(); |
| 28 | + let transform: Transformation = inst.transformation(); |
| 29 | + |
| 30 | + // Add all shape elements directly from child cell after applying the instances transformation |
| 31 | + for elem in lib.cell(cellid).elements() { |
| 32 | + if let Element::Shape(shape) = elem { |
| 33 | + let transformed_shape = shape.transform_ref(transform); |
| 34 | + ret.push(transformed_shape); |
| 35 | + } |
| 36 | + } |
| 37 | + |
| 38 | + // Recursively flatten child instances and apply cumulative transformations |
| 39 | + for instance in lib.cell(cellid).instances() { |
| 40 | + let mut flattened_shapes = flatten_instance::<L>(instance.1, lib); |
| 41 | + for flattened_shape in &mut flattened_shapes { |
| 42 | + *flattened_shape = flattened_shape.transform_ref(transform); |
| 43 | + } |
| 44 | + ret.append(&mut flattened_shapes); |
| 45 | + } |
| 46 | + |
| 47 | + ret |
| 48 | +} |
| 49 | + |
| 50 | +/// Returns a vector of all shapes from a single cell's transformed child instances and itself. |
| 51 | +fn flatten_cell<L>(cell: &Cell<L>, lib: &Library<L>) -> Vec<Shape<L>> |
| 52 | +where |
| 53 | + L: Connectivity + Clone, |
| 54 | +{ |
| 55 | + let mut ret: Vec<Shape<L>> = vec![]; |
| 56 | + |
| 57 | + // No transformation needed |
| 58 | + for elem in cell.elements() { |
| 59 | + if let Element::Shape(shape) = elem { |
| 60 | + ret.push(shape.clone()); |
| 61 | + } |
| 62 | + } |
| 63 | + |
| 64 | + for inst in cell.instances() { |
| 65 | + for flattened_shape in flatten_instance::<L>(inst.1, lib) { |
| 66 | + ret.push(flattened_shape); |
| 67 | + } |
| 68 | + } |
| 69 | + |
| 70 | + ret |
| 71 | +} |
| 72 | + |
| 73 | +pub trait Connectivity: Sized + PartialEq + Eq + Clone + Hash { |
| 74 | + fn connected_layers(&self) -> Vec<Self>; |
| 75 | + |
| 76 | + /// Returns a vector of layers connected to a given layer. |
| 77 | + fn connected(&self, other: &Self) -> bool { |
| 78 | + self.connected_layers().contains(other) |
| 79 | + } |
| 80 | + |
| 81 | + /// Returns a vector of unique hashsets of all connected groups of connected child shapes in a given cell. |
| 82 | + fn connected_components(cell: &Cell<Self>, lib: &Library<Self>) -> Vec<HashSet<Shape<Self>>> |
| 83 | + where |
| 84 | + Self: Clone, |
| 85 | + { |
| 86 | + // All sub-shapes contained in given cell |
| 87 | + let all_shapes = flatten_cell::<Self>(cell, lib); |
| 88 | + let mut djs = DisjointSet::new(all_shapes.len()); |
| 89 | + |
| 90 | + // Build disjoint sets based on overlap and layer connectivity |
| 91 | + for (start_index, start_shape) in all_shapes.clone().into_iter().enumerate() { |
| 92 | + for (other_index, other_shape) in all_shapes.clone().into_iter().enumerate() { |
| 93 | + if start_index != other_index |
| 94 | + && intersect_shapes::<Self>(&start_shape, &other_shape) |
| 95 | + && start_shape.layer().connected(other_shape.layer()) |
| 96 | + { |
| 97 | + djs.union(start_index, other_index); |
| 98 | + } |
| 99 | + } |
| 100 | + } |
| 101 | + |
| 102 | + let mut component_map: HashMap<usize, HashSet<Shape<Self>>> = HashMap::new(); |
| 103 | + |
| 104 | + for (start_index, start_shape) in all_shapes.into_iter().enumerate() { |
| 105 | + let root: usize = djs.get_root(start_index).into_inner(); |
| 106 | + component_map.entry(root).or_default().insert(start_shape); |
| 107 | + } |
| 108 | + |
| 109 | + component_map.into_values().collect() |
| 110 | + } |
| 111 | +} |
| 112 | + |
| 113 | +#[cfg(test)] |
| 114 | +mod tests { |
| 115 | + use super::*; |
| 116 | + use crate::{Cell, Instance, LibraryBuilder, Shape}; |
| 117 | + use geometry::rect::Rect; |
| 118 | + use std::collections::{HashMap, HashSet}; |
| 119 | + |
| 120 | + // This struct helps check if two shapes are connected after connected_components has been run |
| 121 | + struct ComponentLookup<L> { |
| 122 | + shape_to_component_id: HashMap<Shape<L>, usize>, |
| 123 | + } |
| 124 | + |
| 125 | + impl<L> ComponentLookup<L> |
| 126 | + where |
| 127 | + L: Connectivity + Clone, |
| 128 | + { |
| 129 | + /// Creates a new ComponentLookup from a vector of connected components. |
| 130 | + fn new(components: Vec<HashSet<Shape<L>>>) -> Self { |
| 131 | + let mut shape_to_component_id = HashMap::new(); |
| 132 | + for (component_id, component_set) in components.into_iter().enumerate() { |
| 133 | + for shape in component_set.into_iter() { |
| 134 | + shape_to_component_id.insert(shape, component_id); |
| 135 | + } |
| 136 | + } |
| 137 | + ComponentLookup { |
| 138 | + shape_to_component_id, |
| 139 | + } |
| 140 | + } |
| 141 | + |
| 142 | + /// Returns true if both shapes are found and belong to the same component, and false otherwise. |
| 143 | + fn are_connected(&self, s1: &Shape<L>, s2: &Shape<L>) -> bool { |
| 144 | + let comp_id1 = self.shape_to_component_id.get(s1); |
| 145 | + let comp_id2 = self.shape_to_component_id.get(s2); |
| 146 | + |
| 147 | + match (comp_id1, comp_id2) { |
| 148 | + // If both shapes are found, check if their component IDs are the same |
| 149 | + (Some(&id1), Some(&id2)) => id1 == id2, |
| 150 | + _ => false, |
| 151 | + } |
| 152 | + } |
| 153 | + } |
| 154 | + |
| 155 | + #[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)] |
| 156 | + enum Layer { |
| 157 | + Met1, |
| 158 | + Via1, |
| 159 | + Met2, |
| 160 | + Outside, |
| 161 | + } |
| 162 | + |
| 163 | + impl Connectivity for Layer { |
| 164 | + fn connected_layers(&self) -> Vec<Self> { |
| 165 | + match self { |
| 166 | + Self::Met1 => vec![Self::Met1, Self::Via1], |
| 167 | + Self::Via1 => vec![Self::Met1, Self::Via1, Self::Met2], |
| 168 | + Self::Met2 => vec![Self::Via1, Self::Met2], |
| 169 | + Self::Outside => vec![], |
| 170 | + } |
| 171 | + } |
| 172 | + } |
| 173 | + |
| 174 | + #[test] |
| 175 | + fn test_complete() { |
| 176 | + let mut small_cell: Cell<Layer> = Cell::new("small cell test"); |
| 177 | + let mut big_cell: Cell<Layer> = Cell::new("big cell test"); |
| 178 | + let mut lib_builder: LibraryBuilder<Layer> = LibraryBuilder::new(); |
| 179 | + |
| 180 | + // Build small cell first and add to big cell |
| 181 | + let m2_shape1 = Shape::new(Layer::Met2, Rect::from_sides(0, 0, 30, 30)); |
| 182 | + small_cell.add_element(m2_shape1.clone()); |
| 183 | + |
| 184 | + lib_builder.add_cell(small_cell.clone()); |
| 185 | + let small_cell_id = lib_builder.cells().next().unwrap().0; |
| 186 | + |
| 187 | + let small_cell_instance = Instance::new(small_cell_id, "small_cell_test"); |
| 188 | + big_cell.add_instance(small_cell_instance); |
| 189 | + |
| 190 | + // Build big cell |
| 191 | + let m1_shape = Shape::new(Layer::Met1, Rect::from_sides(0, 0, 100, 100)); |
| 192 | + let v1_shape = Shape::new(Layer::Via1, Rect::from_sides(10, 10, 100, 100)); |
| 193 | + let m2_shape2 = Shape::new(Layer::Met2, Rect::from_sides(10, 10, 50, 50)); |
| 194 | + let m2_shape3 = Shape::new(Layer::Met2, Rect::from_sides(1000, 1000, 5000, 5000)); |
| 195 | + big_cell.add_element(m1_shape.clone()); |
| 196 | + big_cell.add_element(v1_shape.clone()); |
| 197 | + big_cell.add_element(m2_shape2.clone()); |
| 198 | + big_cell.add_element(m2_shape3.clone()); |
| 199 | + |
| 200 | + lib_builder.add_cell(big_cell.clone()); |
| 201 | + |
| 202 | + // Build fixed library |
| 203 | + let lib = lib_builder.clone().build().unwrap(); |
| 204 | + |
| 205 | + // Add an outside shape for testing |
| 206 | + let outside_shape = Shape::new(Layer::Outside, Rect::from_sides(0, 0, 100, 100)); |
| 207 | + |
| 208 | + // Find all connected components of big_cell's child shapes |
| 209 | + let components_vec = Layer::connected_components(&big_cell, &lib); |
| 210 | + |
| 211 | + let component_lookup = ComponentLookup::new(components_vec.clone()); |
| 212 | + |
| 213 | + // Expected connections |
| 214 | + assert!( |
| 215 | + component_lookup.are_connected(&m1_shape, &v1_shape), |
| 216 | + "m1_shape should be connected to v1_shape" |
| 217 | + ); |
| 218 | + assert!( |
| 219 | + component_lookup.are_connected(&m1_shape, &m2_shape2), |
| 220 | + "m1_shape should be connected to m2_shape2" |
| 221 | + ); |
| 222 | + assert!( |
| 223 | + component_lookup.are_connected(&m1_shape, &m2_shape1), // m2_shape1 is from the instance |
| 224 | + "m1_shape should be connected to m2_shape1" |
| 225 | + ); |
| 226 | + |
| 227 | + // Expected disconnection |
| 228 | + assert!( |
| 229 | + !component_lookup.are_connected(&m1_shape, &m2_shape3), |
| 230 | + "m1_shape should not be connected to m2_shape3 (isolated)" |
| 231 | + ); |
| 232 | + assert!( |
| 233 | + !component_lookup.are_connected(&m1_shape, &outside_shape), |
| 234 | + "m1_shape should not be connected to outside_shape" |
| 235 | + ); |
| 236 | + |
| 237 | + // Double check number of connected components in library |
| 238 | + assert_eq!( |
| 239 | + components_vec.len(), |
| 240 | + 2, |
| 241 | + "Expected 2 total connected components." |
| 242 | + ); |
| 243 | + } |
| 244 | +} |
0 commit comments