-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgrid_fft_testing.py
159 lines (129 loc) · 5.28 KB
/
grid_fft_testing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import marimo
__generated_with = "0.10.16"
app = marimo.App(width="medium")
@app.cell
def _():
import numpy as np
from numpy import fft
from matplotlib import pyplot as plt
from skimage import io
from scipy.signal import find_peaks
from scipy.stats import variation
from skimage.feature import peak_local_max
from sklearn.cluster import DBSCAN
return DBSCAN, fft, find_peaks, io, np, peak_local_max, plt, variation
@app.cell
def _(np):
def rect_to_polar(nd: np.ndarray):
if nd.ndim != 2:
raise Exception("target array must be 2-dimensional\nshape of array supplied: %s" % nd.shape)
if nd.shape[1] != 2:
raise Exception("target array must be of dimension (n,2)\nshape of array supplied: %s" % nd.shape)
r = np.sum(nd ** 2, 1) ** 0.5
theta = np.array([np.arctan2(y,x) for y,x in nd])
return (r, theta)
return (rect_to_polar,)
@app.cell
def _(np):
def find_base_radius(radii, max_error = 0.1):
_sorted = np.sort(radii)
_best_n = 1
_best_i = None
for _i in range(len(_sorted)):
_scaled = _sorted / _sorted[_i]
_errors = np.abs(_scaled - np.round(_scaled))
if sum(_errors < max_error) > _best_n:
_best_n = sum(_errors < max_error)
_best_i = _i
if _best_n < len(radii)/2:
print('Could not sort at least half of radii into multiples of base number')
return None
_scaled = _sorted / _sorted[_best_i]
_errors = np.abs(_scaled - np.round(_scaled))
_multiples = radii[_errors < max_error]
_multiples = _multiples / np.round(_scaled[_errors < max_error])
return np.mean(_multiples)
return (find_base_radius,)
@app.cell
def _(DBSCAN, fft, find_base_radius, np, peak_local_max, variation):
def grid_fft(img, max_cv_r = 0.01, max_cv_wl = 0.01, min_peak_dist = 20, k_top=8):
f_transform = fft.fft2(img)
f_shift = fft.fftshift(f_transform)
magnitude_2d = np.log(np.abs(f_shift))
peak_coords = peak_local_max(magnitude_2d, min_distance=min_peak_dist)
top_peaks = peak_coords[1:(2*k_top+1):2]
centered = top_peaks - peak_coords[0]
# transform into polar coords
r = np.array(np.sum(centered ** 2, 1) ** 0.5)
theta = np.array([np.arctan2(y,x) for y,x in centered])
# make angles positive for convenience
abs_theta = theta.copy()
abs_theta[abs_theta < 0] += np.pi
# cluster the angles and pull two largest clusters
db = DBSCAN(eps=0.1, min_samples=int(k_top/4)).fit(abs_theta.reshape(-1,1))
theta0 = np.mean(abs_theta[db.labels_ == 0])
theta1 = np.mean(abs_theta[db.labels_ == 1])
# deviation from right angle should probably be < 0.05 radians
dev_from_right_angle = abs((theta0-theta1)) / (np.pi/2) - 1
if dev_from_right_angle > 0.05:
raise Warning("Angles of two largest FFT peak clusters are > 0.05 radians from orthogonal. Check that grid is oriented correctly or try lowering k_top")
# pull the radii
r0_list = np.sort(r[db.labels_ == 0])
r1_list = np.sort(r[db.labels_ == 1])
# get polar coords of "average" peak distance, convert to rectangular
polar_0 = (find_base_radius(r0_list), theta0)
polar_1 = (find_base_radius(r1_list), theta1)
rect_0 = np.array((polar_0[0] * np.sin(polar_0[1]), polar_0[0] * np.cos(polar_0[1])))
rect_1 = np.array((polar_1[0] * np.sin(polar_1[1]), polar_1[0] * np.cos(polar_1[1])))
# convert back into original shape and invert from frequency to wavelength in px
# need to scale the dimensions of frequency based on the fact that the image isn't square
min_side = np.min(img.shape)
scaling_factor = img.shape / min_side
wl0 = min_side / np.sqrt(np.sum((rect_0 / scaling_factor)**2))
wl1 = min_side / np.sqrt(np.sum((rect_1 / scaling_factor)**2))
if variation((wl0,wl1)) > max_cv_wl:
print("Detected wavelengths have greater CV than tolerance: %s, %s" % (wl0,wl1))
return None
return np.sum((wl0,wl1))/2
return (grid_fft,)
@app.cell
def _(io, plt):
# some sample images
blue = io.imread('sample_grids/blue_grid.jpg')[:,:,2]
plt.figure(figsize=(9, 6))
plt.imshow(blue, cmap='grey')
return (blue,)
@app.cell
def _(blue, grid_fft):
# need to set the min_peak_dist lower if the task fails
print(grid_fft(blue, min_peak_dist=5))
return
@app.cell
def _(io, plt):
greenmat = io.imread('sample_grids/green_cutting_mat.jpg')[:,:,2]
plt.figure(figsize=(9, 6))
plt.imshow(greenmat, cmap='grey')
return (greenmat,)
@app.cell
def _(greenmat, grid_fft):
# need to set the min_peak_dist lower if the task fails
print(grid_fft(greenmat))
return
@app.cell
def _(io, plt):
angled = io.imread('sample_grids/cutting_mat_angle.jpeg')[:,:,2]
plt.figure(figsize=(9, 6))
plt.imshow(angled, cmap='grey')
return (angled,)
@app.cell
def _(angled, grid_fft):
# the angled one finds the small grid squares first
print(grid_fft(angled))
print(grid_fft(angled, k_top=64))
return
@app.cell
def _():
import marimo as mo
return (mo,)
if __name__ == "__main__":
app.run()