-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathopen_ai.py
131 lines (110 loc) · 5.65 KB
/
open_ai.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
from concurrent.futures import ThreadPoolExecutor, as_completed
from functools import cache
from logging import Logger
from typing import List, Any
import numpy as np
from openai import OpenAI
from course import Course
def get_openai_client(api_key: str, logger: Logger, show_api_key: bool):
"""
Returns an OpenAI client object.
"""
if api_key is None or api_key == "REPLACE_WITH_OPENAI_API_KEY":
logger.warning("No OpenAI API key provided.")
return None
logger.info("Creating OpenAI client" + (f" with API key {api_key}" if show_api_key else ""))
return OpenAI(api_key=api_key)
def get_embedding(client: OpenAI, model, text, stats):
response = client.embeddings.create(model=model, input=text)
stats["prompt_tokens"] += response.usage.prompt_tokens
stats["total_tokens"] += response.usage.total_tokens
return response.data[0].embedding
def cosine_similarity(vec_a, vec_b):
"""
Computes the cosine similarity between two vectors.
"""
return np.dot(vec_a, vec_b) / (np.linalg.norm(vec_a) * np.linalg.norm(vec_b))
def find_best_prerequisite(client, model, course, prerequisites, max_prerequisites, stats) -> list[Course]:
course_embedding = get_embedding(client, model, course.get_full_summary(), stats)
prerequisite_embeddings = [
(prereq, get_embedding(client, model, prereq.get_short_summary(), stats)) for prereq in prerequisites
]
similarities = [
(prereq, cosine_similarity(course_embedding, prereq_embedding))
for prereq, prereq_embedding in prerequisite_embeddings
]
# Find the prerequisite with the highest similarity score
best_prerequisite = sorted(similarities, key=lambda x: x[1], reverse=True)[:max_prerequisites]
# Return the course object of the best prerequisite
return [req[0] for req in best_prerequisite]
def prune_prerequisites(client, model, course: Course, course_ref_to_course, max_prerequisites, stats, logger: Logger):
if len(course.prerequisites.course_references) <= max_prerequisites:
logger.debug(f"Skipping optimization for {course.get_identifier()} as it has {len(course.prerequisites.course_references)} prerequisites")
course.optimized_prerequisites = course.prerequisites
return
prerequisites = set()
for reference in course.prerequisites.course_references:
if reference not in course_ref_to_course:
logger.error(f"Prerequisite not found in courses: {reference}")
continue
c = course_ref_to_course[reference]
prerequisites.add(c)
best = find_best_prerequisite(
client=client,
model=model,
course=course,
prerequisites=prerequisites,
max_prerequisites=max_prerequisites,
stats=stats
)
logger.debug(f"Selected {([c.get_identifier() for c in best])} as the best prerequisite(s) for {course.get_identifier()} out of {len(prerequisites)} options")
stats["removed_prerequisites"] += len(prerequisites) - max_prerequisites
course.optimized_prerequisites = Course.Prerequisites(
course_references=[c.course_reference for c in best],
prerequisites_text=course.prerequisites.prerequisites_text
)
def optimize_prerequisite_thread(client, model, course, course_ref_to_course, max_prerequisites, max_runtime, max_retries, stats, logger):
retries = 0
while retries < max_retries:
try:
# Optimize prerequisites (ensure the request doesn't exceed timeout)
with ThreadPoolExecutor(max_workers=1) as executor:
future = executor.submit(prune_prerequisites, client, model, course, course_ref_to_course, max_prerequisites, stats, logger)
return future.result(timeout=max_runtime)
except Exception as e:
retries += 1
print(f"Retry {retries} for course {course.get_identifier()} failed: {e}")
if retries >= max_retries:
print(f"Optimization for course {course.get_identifier()} failed completely.")
return None # Abandon optimization if all retries fail
def optimize_prerequisites(
client: OpenAI,
model: str,
course_ref_to_course: dict[Course.Reference, Course],
max_prerequisites: int | float,
max_runtime: int,
max_retries: int,
max_threads: int,
stats: dict[str, Any],
logger: Logger
):
logger.info("Optimizing prerequisites...")
# Use ThreadPoolExecutor to handle multiple courses concurrently
total_courses = len(course_ref_to_course)
completed_courses = 0
with ThreadPoolExecutor(max_workers=max_threads) as executor:
future_to_course = {
executor.submit(optimize_prerequisite_thread, client, model, course, course_ref_to_course, max_prerequisites, max_runtime, max_retries, stats, logger): course
for course in course_ref_to_course.values()
}
for future in as_completed(future_to_course):
course = future_to_course[future]
completed_courses += 1
remaining_courses = total_courses - completed_courses
suffix = f"for course {course.get_identifier()}. {remaining_courses} courses remaining. ({(completed_courses * 100/total_courses):.2f}% complete)"
try:
future.result() # This will re-raise any exception from the thread
logger.info(f"Optimization completed {suffix}")
except Exception as e:
logger.error(f"Optimization failed {suffix}: {e}")
logger.info(f"Optimization completed. Prompt Tokens used: {stats['prompt_tokens']}. Total tokens used: {stats['total_tokens']}. Removed requisites: {stats['removed_prerequisites']}")