-
Notifications
You must be signed in to change notification settings - Fork 19
/
model.py
337 lines (263 loc) · 9.06 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
from scipy.sparse import csr_matrix, vstack
from scipy import sparse
from numpy import array, zeros, ones, matrix, concatenate
import math
import random
from sklearn import linear_model
from sklearn import cross_validation
from sklearn import metrics
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
from LM import KneserNeyLM, ngrams
from utils import *
from data import Row
#
# Logistic regression model
class LogRegModel:
def __init__(self, extractor, C = 7, estimator = None):
self.extractor = extractor
if None == estimator:
self.estimator = linear_model.LogisticRegression(C = C)
else:
self.estimator = estimator
def train(self, rows):
self.extractor.train(rows)
rowsFeat = [(row.insult, self.extractor.extract(row)) for row in rows]
self.featDict = featuresDict(rowsFeat)
X, Y = featuresToMatrix(self.featDict, rowsFeat)
self.estimator.fit(X, Y)
return X, Y
def classify1(self, row):
x = featuresVec(self.featDict, self.extractor.extract(row))
w0, w1 = self.estimator.predict_proba(x)[0]
return (1.0+w1-w0)/2
def classify(self, rows):
X = self.featurize(rows)
Y = self.estimator.predict_proba(X)
return array([(1.0+w1-w0)/2 for w0, w1 in Y])
def featurize(self, rows):
return array([featuresVec(self.featDict, self.extractor.extract(row)) for row in rows])
class RankModel:
def __init__(self, extractor, C = 1, estimator = None, n = 10000):
self.extractor = extractor
if None == estimator:
self.estimator = linear_model.LogisticRegression(C = C)
else:
self.estimator = estimator
self.n = n
def train(self, rows):
self.extractor.train(rows)
rowsFeat = [(row.insult, self.extractor.extract(row)) for row in rows]
self.featDict = featuresDict(rowsFeat)
posX, posY = featuresToMatrix(self.featDict, filter(lambda (insult, f): insult, rowsFeat))
negX, negY = featuresToMatrix(self.featDict, filter(lambda (insult, f): not insult, rowsFeat))
# generate pairwise ranking training set
posi, negi = range(len(posY)), range(len(negY))
n = min(len(posi), len(negi))
Xs, Ys = list(), list()
while len(Xs)*n < self.n:
# pos > neg
random.shuffle(posi)
random.shuffle(negi)
Xs.append(posX[posi[:n]] - negX[negi[:n]])
Ys.append(ones(n))
# neg < pos
random.shuffle(posi)
random.shuffle(negi)
Xs.append(negX[negi[:n]] - posX[posi[:n]])
Ys.append(zeros(n))
X = vstack(Xs)
Y = concatenate(Ys)
self.estimator.fit(X, Y)
return X, Y
def classify1(self, row):
x = featuresVec(self.featDict, self.extractor.extract(row))
w0, w1 = self.estimator.predict_proba(x)[0]
return (1.0+w1-w0)/2
def classify(self, rows):
X = self.featurize(rows)
Y = self.estimator.predict_proba(X)
return array([(1.0+w1-w0)/2 for w0, w1 in Y])
def featurize(self, rows):
return array([featuresVec(self.featDict, self.extractor.extract(row)) for row in rows])
class RegModel:
def __init__(self, extractor, estimator):
self.extractor = extractor
self.estimator = estimator
def train(self, rows):
self.extractor.train(rows)
rowsFeat = [(row.insult, self.extractor.extract(row)) for row in rows]
self.featDict = featuresDict(rowsFeat)
X, Y = featuresToMatrix(self.featDict, rowsFeat)
self.estimator.fit(X, Y)
return X, Y
def classify1(self, row):
x = featuresVec(self.featDict, self.extractor.extract(row))
return self.estimator.predict(x)[0]
def classify(self, rows):
X = self.featurize(rows)
Y = self.estimator.predict(X)
return Y
def featurize(self, rows):
return array([featuresVec(self.featDict, self.extractor.extract(row)) for row in rows])
#
# Sentence level classifier
class SenModel:
def __init__(self, model):
self.model = model
def train(self, rows):
posRows = self._splitSen([row for row in rows if row.insult and 1 == len(row.sentences)])
negRows = self._splitSen([row for row in rows if not row.insult])
newRows = array(posRows + negRows)
return self.model.train(newRows)
def classify1(self, row):
return self.model.classify(self._splitSen([row])).mean()
def classify(self, rows):
return array([self.classify1(row) for row in rows])
def featurize(self, rows):
raise "not implemented"
def _toText(self, sentence):
return ' '.join([tok[0] for tok in sentence.tokens])
def _splitSen(self, rows):
return [Row(row.dt, self._toText(sentence), [sentence], row.insult) for row in rows for sentence in row.sentences]
#
# Language model classifier
class LMModel:
def __init__(self, seqExtractor, n = 2):
self.words = None
self.seqExtractor = seqExtractor
self.lm0 = KneserNeyLM(n)
self.lm1 = KneserNeyLM(n)
def train(self, rows):
self.seqExtractor.train(rows)
self.lm0.train([self.seqExtractor.extract(row) for row in rows if not row.insult])
self.lm1.train([self.seqExtractor.extract(row) for row in rows if row.insult])
def classify1(self, row):
seq = self.seqExtractor.extract(row)
w = 0.0 + self.lm1.score(seq) - self.lm0.score(seq)
if 100 < w: w = 100
if w < -100: w = -100
return 1.0/(1.0 + math.exp(-w))
def classify(self, rows):
return array([self.classify1(row) for row in rows])
# LM sequence extractors
class WordsSeqExtractor():
def __init__(self, seqF):
self.seqF = seqF
self.words = dict()
def train(self, rows):
self.words = self.prepareWords(rows)
def extract(self, row):
def getWord(w):
if w in self.words:
return w
else:
return '<unk>'
return filter(lambda s: s != None, map(getWord, self.seqF(row)))
def prepareWords(self, rows):
words = buildDict(((row.insult, self.seqF(row)) for row in rows))
return dict([(w, (0.0+pc/(1.0+pc+nc))) for (w, (pc, nc)) in words.items() if 5 < pc+nc and 3 <= len(w)])
# Basic sequence extractors
class SeqExtractor():
def __init__(self, seqF):
self.seqF = seqF
def train(self, rows):
pass
def extract(self, row):
return self.seqF(row)
class Basic():
def __init__(self, extractor):
self.extractor = extractor
def train(self, rows):
pass
def classify(self, rows):
return array([self.extractor(row) for row in rows])
def classify1(self, row):
return self.extractor(row)
def featurize(self, rows):
return self.classify(rows)
def featurize1(self, row):
return self.classify1(row)
#
# Extract features set (like words/ngrams/shapes)
class SetExtractor:
def __init__(self, extractF, scoreF):
self.extractF = extractF
self.scoreF = scoreF
self.featDict = dict()
def train(self, rows):
featRows = ((row.insult, self.extractF(row)) for row in rows)
self.featDict = self.scoreF(featRows)
def extract(self, row):
features = set(self.extractF(row))
return [(feature, self.featDict[feature]) for feature in features if feature in self.featDict]
#
# Extract features, score with TF (normalized to length)
class TFExtractor:
def __init__(self, extractF):
self.extractF = extractF
def train(self, rows):
pass
def extract(self, row):
fs = self.extractF(row)
l = len(fs)
if 0 == l:
return []
return [(f, (0.0+c)/l) for f, c in count(fs)]
class CombinedExtractor:
def __init__(self, *extractors):
self.extractors = extractors
def train(self, rows):
for e in self.extractors:
e.train(rows)
def extract(self, row):
return [(f, w) for e in self.extractors for f, w in e.extract(row)]
# decorate feature
def decorateFeat(mask, extractF):
return lambda row: [mask % feat for feat in extractF(row)]
# Features: combinators
def textFeat(extractF):
return lambda row: extractF(row.text)
# Combine feature extractor methods
def combine(*fs):
def exF(row):
features = list()
for f in fs:
features.extend(f(row))
return features
return exF
# (res, [features]) -> {feature: i}
def featuresDict(rows):
featSet = set([f for res, features in rows for f, w in features])
return dict([(f, i) for i, f in enumerate(featSet)])
# FeatDict -> (res, [features]) -> Matrix Double
def featuresToMatrix(featDict, rows):
n = len(rows)
X = csr_matrix([featuresVec(featDict, features) for res, features in rows])
Y = array([float(res) for res, features in rows])
return X, Y
def featuresVec(featuresDict, features):
n = len(featuresDict)
v = zeros(n)
for f, w in features:
featI = featuresDict.get(f, None)
if None != featI:
v[featI] = w
return v
# Scores
def probScore(featRows):
return dict([(feat, (0.0+pc/(1.0+pc+nc))) for (feat, (pc, nc)) in buildDict(featRows).items() if 0 < pc and 5 < pc+nc])
def oneScore(featRows):
return dict([(feat, 1) for (feat, (pc, nc)) in buildDict(featRows).items() if 0 < pc and 5 < pc+nc])
# calculate feature-class distr
# input: [(class, [feature])]
def buildDict(recs):
words = dict()
for outcome, features in recs:
for feature in features:
posCount, negCount = words.get(feature, (0, 0))
if outcome:
posCount += 1
else:
negCount += 1
words[feature] = (posCount, negCount)
return words